![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3988 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3978 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3978 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∩ cin 3961 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 |
This theorem is referenced by: sslin 4250 ssrind 4251 ss2in 4252 ssdisj 4465 ssdifin0 4491 ssres 6023 predpredss 6329 sbthlem7 9127 onsdominel 9164 phplem2OLD 9252 infdifsn 9694 fin23lem23 10363 ttukeylem2 10547 limsupgord 15504 pjfval 21743 pjpm 21745 tgss 22990 neindisj2 23146 1stcrest 23476 kgencn3 23581 trfbas2 23866 fclsrest 24047 fcfnei 24058 cnextcn 24090 tsmsres 24167 trust 24253 restutopopn 24262 metrest 24552 reperflem 24853 ellimc3 25928 limcflf 25930 lhop1lem 26066 ppinprm 27209 chtnprm 27211 chtppilimlem1 27531 orthin 31474 3oalem6 31695 mdslle1i 32345 mdslle2i 32346 mdslj1i 32347 mdslj2i 32348 mdslmd1lem2 32354 mdslmd3i 32360 mdexchi 32363 eulerpartlemn 34362 poimirlem3 37609 poimirlem29 37635 ismblfin 37647 nnuzdisj 45304 sumnnodd 45585 liminfgord 45709 sge0less 46347 sepnsepo 48719 |
Copyright terms: Public domain | W3C validator |