![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3992 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3992 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: sslin 4264 ssrind 4265 ss2in 4266 ssdisj 4483 ssdifin0 4509 ssres 6033 predpredss 6339 sbthlem7 9155 onsdominel 9192 phplem2OLD 9281 infdifsn 9726 fin23lem23 10395 ttukeylem2 10579 limsupgord 15518 pjfval 21749 pjpm 21751 tgss 22996 neindisj2 23152 1stcrest 23482 kgencn3 23587 trfbas2 23872 fclsrest 24053 fcfnei 24064 cnextcn 24096 tsmsres 24173 trust 24259 restutopopn 24268 metrest 24558 reperflem 24859 ellimc3 25934 limcflf 25936 lhop1lem 26072 ppinprm 27213 chtnprm 27215 chtppilimlem1 27535 orthin 31478 3oalem6 31699 mdslle1i 32349 mdslle2i 32350 mdslj1i 32351 mdslj2i 32352 mdslmd1lem2 32358 mdslmd3i 32364 mdexchi 32367 eulerpartlemn 34346 poimirlem3 37583 poimirlem29 37609 ismblfin 37621 nnuzdisj 45270 sumnnodd 45551 liminfgord 45675 sge0less 46313 sepnsepo 48603 |
Copyright terms: Public domain | W3C validator |