| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3930 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3930 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: sslin 4206 ssrind 4207 ss2in 4208 ssdisj 4423 ssdifin0 4449 ssres 5974 predpredss 6281 sbthlem7 9057 onsdominel 9090 infdifsn 9610 fin23lem23 10279 ttukeylem2 10463 limsupgord 15438 pjfval 21615 pjpm 21617 tgss 22855 neindisj2 23010 1stcrest 23340 kgencn3 23445 trfbas2 23730 fclsrest 23911 fcfnei 23922 cnextcn 23954 tsmsres 24031 trust 24117 restutopopn 24126 metrest 24412 reperflem 24707 ellimc3 25780 limcflf 25782 lhop1lem 25918 ppinprm 27062 chtnprm 27064 chtppilimlem1 27384 orthin 31375 3oalem6 31596 mdslle1i 32246 mdslle2i 32247 mdslj1i 32248 mdslj2i 32249 mdslmd1lem2 32255 mdslmd3i 32261 mdexchi 32264 eulerpartlemn 34372 poimirlem3 37617 poimirlem29 37643 ismblfin 37655 nnuzdisj 45351 sumnnodd 45628 liminfgord 45752 sge0less 46390 sepnsepo 48912 |
| Copyright terms: Public domain | W3C validator |