| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3928 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3918 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3918 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3940 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: sslin 4193 ssrind 4194 ss2in 4195 ssdisj 4410 ssdifin0 4436 ssres 5952 predpredss 6255 sbthlem7 9006 onsdominel 9039 infdifsn 9547 fin23lem23 10214 ttukeylem2 10398 limsupgord 15376 pjfval 21641 pjpm 21643 tgss 22881 neindisj2 23036 1stcrest 23366 kgencn3 23471 trfbas2 23756 fclsrest 23937 fcfnei 23948 cnextcn 23980 tsmsres 24057 trust 24142 restutopopn 24151 metrest 24437 reperflem 24732 ellimc3 25805 limcflf 25807 lhop1lem 25943 ppinprm 27087 chtnprm 27089 chtppilimlem1 27409 orthin 31421 3oalem6 31642 mdslle1i 32292 mdslle2i 32293 mdslj1i 32294 mdslj2i 32295 mdslmd1lem2 32301 mdslmd3i 32307 mdexchi 32310 eulerpartlemn 34389 poimirlem3 37662 poimirlem29 37688 ismblfin 37700 nnuzdisj 45393 sumnnodd 45669 liminfgord 45791 sge0less 46429 sepnsepo 48954 |
| Copyright terms: Public domain | W3C validator |