| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3943 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3933 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3933 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3955 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: sslin 4209 ssrind 4210 ss2in 4211 ssdisj 4426 ssdifin0 4452 ssres 5977 predpredss 6284 sbthlem7 9063 onsdominel 9096 infdifsn 9617 fin23lem23 10286 ttukeylem2 10470 limsupgord 15445 pjfval 21622 pjpm 21624 tgss 22862 neindisj2 23017 1stcrest 23347 kgencn3 23452 trfbas2 23737 fclsrest 23918 fcfnei 23929 cnextcn 23961 tsmsres 24038 trust 24124 restutopopn 24133 metrest 24419 reperflem 24714 ellimc3 25787 limcflf 25789 lhop1lem 25925 ppinprm 27069 chtnprm 27071 chtppilimlem1 27391 orthin 31382 3oalem6 31603 mdslle1i 32253 mdslle2i 32254 mdslj1i 32255 mdslj2i 32256 mdslmd1lem2 32262 mdslmd3i 32268 mdexchi 32271 eulerpartlemn 34379 poimirlem3 37624 poimirlem29 37650 ismblfin 37662 nnuzdisj 45358 sumnnodd 45635 liminfgord 45759 sge0less 46397 sepnsepo 48916 |
| Copyright terms: Public domain | W3C validator |