![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3889 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 4096 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 4096 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 297 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 3901 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2083 ∩ cin 3864 ⊆ wss 3865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-in 3872 df-ss 3880 |
This theorem is referenced by: sslin 4137 ssrind 4138 ss2in 4139 ssdisj 4329 ssdifin0 4351 ssres 5768 predpredss 6036 sbthlem7 8487 onsdominel 8520 phplem2 8551 infdifsn 8973 fin23lem23 9601 ttukeylem2 9785 limsupgord 14667 pjfval 20536 pjpm 20538 tgss 21264 neindisj2 21419 1stcrest 21749 kgencn3 21854 trfbas2 22139 fclsrest 22320 fcfnei 22331 cnextcn 22363 tsmsres 22439 trust 22525 restutopopn 22534 metrest 22821 reperflem 23113 ellimc3 24164 limcflf 24166 lhop1lem 24297 ppinprm 25415 chtnprm 25417 chtppilimlem1 25735 orthin 28910 3oalem6 29131 mdslle1i 29781 mdslle2i 29782 mdslj1i 29783 mdslj2i 29784 mdslmd1lem2 29790 mdslmd3i 29796 mdexchi 29799 eulerpartlemn 31252 poimirlem3 34447 poimirlem29 34473 ismblfin 34485 nnuzdisj 41185 sumnnodd 41474 liminfgord 41598 sge0less 42238 |
Copyright terms: Public domain | W3C validator |