Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 3927 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: sslin 4168 ssrind 4169 ss2in 4170 ssdisj 4393 ssdifin0 4416 ssres 5918 predpredss 6209 sbthlem7 8876 onsdominel 8913 phplem2OLD 9001 infdifsn 9415 fin23lem23 10082 ttukeylem2 10266 limsupgord 15181 pjfval 20913 pjpm 20915 tgss 22118 neindisj2 22274 1stcrest 22604 kgencn3 22709 trfbas2 22994 fclsrest 23175 fcfnei 23186 cnextcn 23218 tsmsres 23295 trust 23381 restutopopn 23390 metrest 23680 reperflem 23981 ellimc3 25043 limcflf 25045 lhop1lem 25177 ppinprm 26301 chtnprm 26303 chtppilimlem1 26621 orthin 29808 3oalem6 30029 mdslle1i 30679 mdslle2i 30680 mdslj1i 30681 mdslj2i 30682 mdslmd1lem2 30688 mdslmd3i 30694 mdexchi 30697 eulerpartlemn 32348 poimirlem3 35780 poimirlem29 35806 ismblfin 35818 nnuzdisj 42894 sumnnodd 43171 liminfgord 43295 sge0less 43930 sepnsepo 46217 |
Copyright terms: Public domain | W3C validator |