| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3931 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3921 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3921 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3943 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: sslin 4196 ssrind 4197 ss2in 4198 ssdisj 4413 ssdifin0 4439 ssres 5958 predpredss 6260 sbthlem7 9017 onsdominel 9050 infdifsn 9572 fin23lem23 10239 ttukeylem2 10423 limsupgord 15397 pjfval 21631 pjpm 21633 tgss 22871 neindisj2 23026 1stcrest 23356 kgencn3 23461 trfbas2 23746 fclsrest 23927 fcfnei 23938 cnextcn 23970 tsmsres 24047 trust 24133 restutopopn 24142 metrest 24428 reperflem 24723 ellimc3 25796 limcflf 25798 lhop1lem 25934 ppinprm 27078 chtnprm 27080 chtppilimlem1 27400 orthin 31408 3oalem6 31629 mdslle1i 32279 mdslle2i 32280 mdslj1i 32281 mdslj2i 32282 mdslmd1lem2 32288 mdslmd3i 32294 mdexchi 32297 eulerpartlemn 34348 poimirlem3 37602 poimirlem29 37628 ismblfin 37640 nnuzdisj 45335 sumnnodd 45612 liminfgord 45736 sge0less 46374 sepnsepo 48909 |
| Copyright terms: Public domain | W3C validator |