| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3952 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3942 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3942 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3964 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: sslin 4218 ssrind 4219 ss2in 4220 ssdisj 4435 ssdifin0 4461 ssres 5990 predpredss 6297 sbthlem7 9103 onsdominel 9140 phplem2OLD 9229 infdifsn 9671 fin23lem23 10340 ttukeylem2 10524 limsupgord 15488 pjfval 21666 pjpm 21668 tgss 22906 neindisj2 23061 1stcrest 23391 kgencn3 23496 trfbas2 23781 fclsrest 23962 fcfnei 23973 cnextcn 24005 tsmsres 24082 trust 24168 restutopopn 24177 metrest 24463 reperflem 24758 ellimc3 25832 limcflf 25834 lhop1lem 25970 ppinprm 27114 chtnprm 27116 chtppilimlem1 27436 orthin 31427 3oalem6 31648 mdslle1i 32298 mdslle2i 32299 mdslj1i 32300 mdslj2i 32301 mdslmd1lem2 32307 mdslmd3i 32313 mdexchi 32316 eulerpartlemn 34413 poimirlem3 37647 poimirlem29 37673 ismblfin 37685 nnuzdisj 45382 sumnnodd 45659 liminfgord 45783 sge0less 46421 sepnsepo 48898 |
| Copyright terms: Public domain | W3C validator |