Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 295 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 3923 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: sslin 4165 ssrind 4166 ss2in 4167 ssdisj 4390 ssdifin0 4413 ssres 5907 predpredss 6198 sbthlem7 8829 onsdominel 8862 phplem2 8893 infdifsn 9345 fin23lem23 10013 ttukeylem2 10197 limsupgord 15109 pjfval 20823 pjpm 20825 tgss 22026 neindisj2 22182 1stcrest 22512 kgencn3 22617 trfbas2 22902 fclsrest 23083 fcfnei 23094 cnextcn 23126 tsmsres 23203 trust 23289 restutopopn 23298 metrest 23586 reperflem 23887 ellimc3 24948 limcflf 24950 lhop1lem 25082 ppinprm 26206 chtnprm 26208 chtppilimlem1 26526 orthin 29709 3oalem6 29930 mdslle1i 30580 mdslle2i 30581 mdslj1i 30582 mdslj2i 30583 mdslmd1lem2 30589 mdslmd3i 30595 mdexchi 30598 eulerpartlemn 32248 poimirlem3 35707 poimirlem29 35733 ismblfin 35745 nnuzdisj 42784 sumnnodd 43061 liminfgord 43185 sge0less 43820 sepnsepo 46105 |
Copyright terms: Public domain | W3C validator |