| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3924 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3914 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3914 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | ssrdv 3936 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: sslin 4192 ssrind 4193 ss2in 4194 ssdisj 4409 ssdifin0 4435 ssres 5956 predpredss 6260 sbthlem7 9013 onsdominel 9046 infdifsn 9554 fin23lem23 10224 ttukeylem2 10408 limsupgord 15381 pjfval 21645 pjpm 21647 tgss 22884 neindisj2 23039 1stcrest 23369 kgencn3 23474 trfbas2 23759 fclsrest 23940 fcfnei 23951 cnextcn 23983 tsmsres 24060 trust 24145 restutopopn 24154 metrest 24440 reperflem 24735 ellimc3 25808 limcflf 25810 lhop1lem 25946 ppinprm 27090 chtnprm 27092 chtppilimlem1 27412 orthin 31428 3oalem6 31649 mdslle1i 32299 mdslle2i 32300 mdslj1i 32301 mdslj2i 32302 mdslmd1lem2 32308 mdslmd3i 32314 mdexchi 32317 eulerpartlemn 34415 poimirlem3 37683 poimirlem29 37709 ismblfin 37721 nnuzdisj 45478 sumnnodd 45754 liminfgord 45876 sge0less 46514 sepnsepo 49048 |
| Copyright terms: Public domain | W3C validator |