![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrin | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3965 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3965 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∩ cin 3948 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: sslin 4235 ssrind 4236 ss2in 4237 ssdisj 4460 ssdifin0 4486 ssres 6009 predpredss 6308 sbthlem7 9089 onsdominel 9126 phplem2OLD 9218 infdifsn 9652 fin23lem23 10321 ttukeylem2 10505 limsupgord 15416 pjfval 21261 pjpm 21263 tgss 22471 neindisj2 22627 1stcrest 22957 kgencn3 23062 trfbas2 23347 fclsrest 23528 fcfnei 23539 cnextcn 23571 tsmsres 23648 trust 23734 restutopopn 23743 metrest 24033 reperflem 24334 ellimc3 25396 limcflf 25398 lhop1lem 25530 ppinprm 26656 chtnprm 26658 chtppilimlem1 26976 orthin 30699 3oalem6 30920 mdslle1i 31570 mdslle2i 31571 mdslj1i 31572 mdslj2i 31573 mdslmd1lem2 31579 mdslmd3i 31585 mdexchi 31588 eulerpartlemn 33380 poimirlem3 36491 poimirlem29 36517 ismblfin 36529 nnuzdisj 44065 sumnnodd 44346 liminfgord 44470 sge0less 45108 sepnsepo 47556 |
Copyright terms: Public domain | W3C validator |