![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbpredg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbpredg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbin 4465 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) | |
2 | csbima12 6108 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) | |
3 | csbcnv 5908 | . . . . . . 7 ⊢ ◡⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌◡𝑅 | |
4 | 3 | imaeq1i 6086 | . . . . . 6 ⊢ (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) |
5 | csbsng 4733 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑋} = {⦋𝐴 / 𝑥⦌𝑋}) | |
6 | 5 | imaeq2d 6089 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
7 | 4, 6 | eqtr3id 2794 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
8 | 2, 7 | eqtrid 2792 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
9 | 8 | ineq2d 4241 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
10 | 1, 9 | eqtrid 2792 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
11 | df-pred 6332 | . . 3 ⊢ Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (◡𝑅 “ {𝑋})) | |
12 | 11 | csbeq2i 3929 | . 2 ⊢ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) |
13 | df-pred 6332 | . 2 ⊢ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) | |
14 | 10, 12, 13 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ∩ cin 3975 {csn 4648 ◡ccnv 5699 “ cima 5703 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: csbfrecsg 8325 |
Copyright terms: Public domain | W3C validator |