MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbpredg Structured version   Visualization version   GIF version

Theorem csbpredg 6296
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbpredg (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))

Proof of Theorem csbpredg
StepHypRef Expression
1 csbin 4417 . . 3 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋}))
2 csbima12 6066 . . . . 5 𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
3 csbcnv 5863 . . . . . . 7 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
43imaeq1i 6044 . . . . . 6 (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
5 csbsng 4684 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑋} = {𝐴 / 𝑥𝑋})
65imaeq2d 6047 . . . . . 6 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
74, 6eqtr3id 2784 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
82, 7eqtrid 2782 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
98ineq2d 4195 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
101, 9eqtrid 2782 . 2 (𝐴𝑉𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
11 df-pred 6290 . . 3 Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (𝑅 “ {𝑋}))
1211csbeq2i 3882 . 2 𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋}))
13 df-pred 6290 . 2 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
1410, 12, 133eqtr4g 2795 1 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  csb 3874  cin 3925  {csn 4601  ccnv 5653  cima 5657  Predcpred 6289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290
This theorem is referenced by:  csbfrecsg  8283
  Copyright terms: Public domain W3C validator