![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbpredg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbpredg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbin 4441 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) | |
2 | csbima12 6083 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) | |
3 | csbcnv 5886 | . . . . . . 7 ⊢ ◡⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌◡𝑅 | |
4 | 3 | imaeq1i 6061 | . . . . . 6 ⊢ (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) |
5 | csbsng 4714 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑋} = {⦋𝐴 / 𝑥⦌𝑋}) | |
6 | 5 | imaeq2d 6064 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
7 | 4, 6 | eqtr3id 2779 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
8 | 2, 7 | eqtrid 2777 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
9 | 8 | ineq2d 4210 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
10 | 1, 9 | eqtrid 2777 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
11 | df-pred 6307 | . . 3 ⊢ Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (◡𝑅 “ {𝑋})) | |
12 | 11 | csbeq2i 3897 | . 2 ⊢ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) |
13 | df-pred 6307 | . 2 ⊢ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) | |
14 | 10, 12, 13 | 3eqtr4g 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⦋csb 3889 ∩ cin 3943 {csn 4630 ◡ccnv 5677 “ cima 5681 Predcpred 6306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 |
This theorem is referenced by: csbfrecsg 8290 |
Copyright terms: Public domain | W3C validator |