Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbpredg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbpredg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbin 4370 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) | |
2 | csbima12 5976 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) | |
3 | csbcnv 5781 | . . . . . . 7 ⊢ ◡⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌◡𝑅 | |
4 | 3 | imaeq1i 5955 | . . . . . 6 ⊢ (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) |
5 | csbsng 4641 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑋} = {⦋𝐴 / 𝑥⦌𝑋}) | |
6 | 5 | imaeq2d 5958 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
7 | 4, 6 | eqtr3id 2793 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
8 | 2, 7 | eqtrid 2790 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
9 | 8 | ineq2d 4143 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
10 | 1, 9 | eqtrid 2790 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
11 | df-pred 6191 | . . 3 ⊢ Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (◡𝑅 “ {𝑋})) | |
12 | 11 | csbeq2i 3836 | . 2 ⊢ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) |
13 | df-pred 6191 | . 2 ⊢ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) | |
14 | 10, 12, 13 | 3eqtr4g 2804 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 ∩ cin 3882 {csn 4558 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: csbfrecsg 8071 |
Copyright terms: Public domain | W3C validator |