![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbpredg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbpredg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbin 4400 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) | |
2 | csbima12 6032 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) | |
3 | csbcnv 5840 | . . . . . . 7 ⊢ ◡⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌◡𝑅 | |
4 | 3 | imaeq1i 6011 | . . . . . 6 ⊢ (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) |
5 | csbsng 4670 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑋} = {⦋𝐴 / 𝑥⦌𝑋}) | |
6 | 5 | imaeq2d 6014 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
7 | 4, 6 | eqtr3id 2787 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
8 | 2, 7 | eqtrid 2785 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
9 | 8 | ineq2d 4173 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
10 | 1, 9 | eqtrid 2785 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
11 | df-pred 6254 | . . 3 ⊢ Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (◡𝑅 “ {𝑋})) | |
12 | 11 | csbeq2i 3864 | . 2 ⊢ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) |
13 | df-pred 6254 | . 2 ⊢ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) | |
14 | 10, 12, 13 | 3eqtr4g 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3856 ∩ cin 3910 {csn 4587 ◡ccnv 5633 “ cima 5637 Predcpred 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 |
This theorem is referenced by: csbfrecsg 8216 |
Copyright terms: Public domain | W3C validator |