MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbpredg Structured version   Visualization version   GIF version

Theorem csbpredg 6307
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbpredg (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))

Proof of Theorem csbpredg
StepHypRef Expression
1 csbin 4440 . . 3 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋}))
2 csbima12 6079 . . . . 5 𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
3 csbcnv 5884 . . . . . . 7 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
43imaeq1i 6057 . . . . . 6 (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
5 csbsng 4713 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑋} = {𝐴 / 𝑥𝑋})
65imaeq2d 6060 . . . . . 6 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
74, 6eqtr3id 2787 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
82, 7eqtrid 2785 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
98ineq2d 4213 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
101, 9eqtrid 2785 . 2 (𝐴𝑉𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
11 df-pred 6301 . . 3 Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (𝑅 “ {𝑋}))
1211csbeq2i 3902 . 2 𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋}))
13 df-pred 6301 . 2 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
1410, 12, 133eqtr4g 2798 1 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  csb 3894  cin 3948  {csn 4629  ccnv 5676  cima 5680  Predcpred 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301
This theorem is referenced by:  csbfrecsg  8269
  Copyright terms: Public domain W3C validator