| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbpredg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| csbpredg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbin 4392 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) | |
| 2 | csbima12 6028 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) | |
| 3 | csbcnv 5823 | . . . . . . 7 ⊢ ◡⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌◡𝑅 | |
| 4 | 3 | imaeq1i 6006 | . . . . . 6 ⊢ (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) |
| 5 | csbsng 4661 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑋} = {⦋𝐴 / 𝑥⦌𝑋}) | |
| 6 | 5 | imaeq2d 6009 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡⦋𝐴 / 𝑥⦌𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
| 7 | 4, 6 | eqtr3id 2780 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌◡𝑅 “ ⦋𝐴 / 𝑥⦌{𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
| 8 | 2, 7 | eqtrid 2778 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋}) = (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) |
| 9 | 8 | ineq2d 4170 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐷 ∩ ⦋𝐴 / 𝑥⦌(◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
| 10 | 1, 9 | eqtrid 2778 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋}))) |
| 11 | df-pred 6248 | . . 3 ⊢ Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (◡𝑅 “ {𝑋})) | |
| 12 | 11 | csbeq2i 3858 | . 2 ⊢ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = ⦋𝐴 / 𝑥⦌(𝐷 ∩ (◡𝑅 “ {𝑋})) |
| 13 | df-pred 6248 | . 2 ⊢ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋) = (⦋𝐴 / 𝑥⦌𝐷 ∩ (◡⦋𝐴 / 𝑥⦌𝑅 “ {⦋𝐴 / 𝑥⦌𝑋})) | |
| 14 | 10, 12, 13 | 3eqtr4g 2791 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⦋csb 3850 ∩ cin 3901 {csn 4576 ◡ccnv 5615 “ cima 5619 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 |
| This theorem is referenced by: csbfrecsg 8214 |
| Copyright terms: Public domain | W3C validator |