MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predss Structured version   Visualization version   GIF version

Theorem predss 6316
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predss Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴

Proof of Theorem predss
StepHypRef Expression
1 df-pred 6308 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inss1 4229 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
31, 2eqsstri 4014 1 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3946  wss 3947  {csn 4630  ccnv 5679  cima 5683  Predcpred 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3473  df-in 3954  df-ss 3964  df-pred 6308
This theorem is referenced by:  frpoins3xpg  8149  frpoins3xp3g  8150  xpord2pred  8154  xpord3pred  8161  fpr3g  8295  frrlem4  8299  frrlem13  8308  fpr1  8313  wfr3g  8332  wfrlem4OLD  8337  wfrlem10OLD  8343  ttrclselem1  9754  frmin  9778  frr3g  9785  frr1  9788  nummin  34719  wsuclem  35426
  Copyright terms: Public domain W3C validator