|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version | ||
| Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) | 
| Ref | Expression | 
|---|---|
| predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pred 6320 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inss1 4236 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 4029 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∩ cin 3949 ⊆ wss 3950 {csn 4625 ◡ccnv 5683 “ cima 5687 Predcpred 6319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ss 3967 df-pred 6320 | 
| This theorem is referenced by: frpoins3xpg 8166 frpoins3xp3g 8167 xpord2pred 8171 xpord3pred 8178 fpr3g 8311 frrlem4 8315 frrlem13 8324 fpr1 8329 wfr3g 8348 wfrlem4OLD 8353 wfrlem10OLD 8359 ttrclselem1 9766 frmin 9790 frr3g 9797 frr1 9800 nummin 35106 wsuclem 35827 | 
| Copyright terms: Public domain | W3C validator |