MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predss Structured version   Visualization version   GIF version

Theorem predss 6329
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predss Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴

Proof of Theorem predss
StepHypRef Expression
1 df-pred 6321 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inss1 4237 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
31, 2eqsstri 4030 1 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3950  wss 3951  {csn 4626  ccnv 5684  cima 5688  Predcpred 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-in 3958  df-ss 3968  df-pred 6321
This theorem is referenced by:  frpoins3xpg  8165  frpoins3xp3g  8166  xpord2pred  8170  xpord3pred  8177  fpr3g  8310  frrlem4  8314  frrlem13  8323  fpr1  8328  wfr3g  8347  wfrlem4OLD  8352  wfrlem10OLD  8358  ttrclselem1  9765  frmin  9789  frr3g  9796  frr1  9799  nummin  35105  wsuclem  35826
  Copyright terms: Public domain W3C validator