| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version | ||
| Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6295 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inss1 4217 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3930 ⊆ wss 3931 {csn 4606 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-ss 3948 df-pred 6295 |
| This theorem is referenced by: frpoins3xpg 8144 frpoins3xp3g 8145 xpord2pred 8149 xpord3pred 8156 fpr3g 8289 frrlem4 8293 frrlem13 8302 fpr1 8307 wfr3g 8326 wfrlem4OLD 8331 wfrlem10OLD 8337 ttrclselem1 9744 frmin 9768 frr3g 9775 frr1 9778 nummin 35127 wsuclem 35848 |
| Copyright terms: Public domain | W3C validator |