| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version | ||
| Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6253 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inss1 4190 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3984 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3904 ⊆ wss 3905 {csn 4579 ◡ccnv 5622 “ cima 5626 Predcpred 6252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 df-pred 6253 |
| This theorem is referenced by: frpoins3xpg 8080 frpoins3xp3g 8081 xpord2pred 8085 xpord3pred 8092 fpr3g 8225 frrlem4 8229 frrlem13 8238 fpr1 8243 wfr3g 8259 ttrclselem1 9640 frmin 9664 frr3g 9671 frr1 9674 nummin 35060 wsuclem 35801 |
| Copyright terms: Public domain | W3C validator |