| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version | ||
| Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6243 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inss1 4182 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3896 ⊆ wss 3897 {csn 4571 ◡ccnv 5610 “ cima 5614 Predcpred 6242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-pred 6243 |
| This theorem is referenced by: frpoins3xpg 8065 frpoins3xp3g 8066 xpord2pred 8070 xpord3pred 8077 fpr3g 8210 frrlem4 8214 frrlem13 8223 fpr1 8228 wfr3g 8244 ttrclselem1 9610 frmin 9637 frr3g 9644 frr1 9647 nummin 35096 wsuclem 35859 |
| Copyright terms: Public domain | W3C validator |