Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version |
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6191 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | inss1 4159 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3882 ⊆ wss 3883 {csn 4558 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pred 6191 |
This theorem is referenced by: fpr3g 8072 frrlem4 8076 frrlem13 8085 fpr1 8090 wfr3g 8109 wfrlem4OLD 8114 wfrlem10OLD 8120 trpredlem1 9405 frr3g 9445 nummin 32963 ttrclselem1 33711 frpoins3xpg 33714 frpoins3xp3g 33715 xpord2pred 33719 xpord3pred 33725 wsuclem 33746 |
Copyright terms: Public domain | W3C validator |