![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version |
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6308 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | inss1 4229 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 4014 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3946 ⊆ wss 3947 {csn 4630 ◡ccnv 5679 “ cima 5683 Predcpred 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-in 3954 df-ss 3964 df-pred 6308 |
This theorem is referenced by: frpoins3xpg 8149 frpoins3xp3g 8150 xpord2pred 8154 xpord3pred 8161 fpr3g 8295 frrlem4 8299 frrlem13 8308 fpr1 8313 wfr3g 8332 wfrlem4OLD 8337 wfrlem10OLD 8343 ttrclselem1 9754 frmin 9778 frr3g 9785 frr1 9788 nummin 34719 wsuclem 35426 |
Copyright terms: Public domain | W3C validator |