![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version |
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6332 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | inss1 4258 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 ⊆ wss 3976 {csn 4648 ◡ccnv 5699 “ cima 5703 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-pred 6332 |
This theorem is referenced by: frpoins3xpg 8181 frpoins3xp3g 8182 xpord2pred 8186 xpord3pred 8193 fpr3g 8326 frrlem4 8330 frrlem13 8339 fpr1 8344 wfr3g 8363 wfrlem4OLD 8368 wfrlem10OLD 8374 ttrclselem1 9794 frmin 9818 frr3g 9825 frr1 9828 nummin 35067 wsuclem 35789 |
Copyright terms: Public domain | W3C validator |