| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version | ||
| Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6256 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inss1 4186 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3977 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 ⊆ wss 3898 {csn 4577 ◡ccnv 5620 “ cima 5624 Predcpred 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-pred 6256 |
| This theorem is referenced by: frpoins3xpg 8079 frpoins3xp3g 8080 xpord2pred 8084 xpord3pred 8091 fpr3g 8224 frrlem4 8228 frrlem13 8237 fpr1 8242 wfr3g 8258 ttrclselem1 9626 frmin 9653 frr3g 9660 frr1 9663 nummin 35176 wsuclem 35939 |
| Copyright terms: Public domain | W3C validator |