Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predss | Structured version Visualization version GIF version |
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predss | ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6199 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | inss1 4167 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3959 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3890 ⊆ wss 3891 {csn 4566 ◡ccnv 5587 “ cima 5591 Predcpred 6198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-pred 6199 |
This theorem is referenced by: fpr3g 8085 frrlem4 8089 frrlem13 8098 fpr1 8103 wfr3g 8122 wfrlem4OLD 8127 wfrlem10OLD 8133 ttrclselem1 9444 trpredlem1 9457 frmin 9490 frr3g 9498 nummin 33042 frpoins3xpg 33766 frpoins3xp3g 33767 xpord2pred 33771 xpord3pred 33777 wsuclem 33798 |
Copyright terms: Public domain | W3C validator |