| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3982 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 3985 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: rabss2 4037 unss2 4146 sslin 4202 intss 4929 ssopab2 5501 xpss12 5646 coss1 5809 coss2 5810 cnvss 5826 rnss 5892 ssres 5963 ssres2 5964 imass1 6061 imass2 6062 predpredss 6269 predrelss 6298 ssoprab2 7437 ressuppss 8139 tposss 8183 onovuni 8288 ss2ixp 8860 fodomfi 9237 fodomfiOLD 9257 coss12d 14914 isumsplit 15782 isumrpcl 15785 cvgrat 15825 gsumzf1o 19826 gsumzmhm 19851 gsumzinv 19859 fldc 20704 dsmmsubg 21685 qustgpopn 24040 metnrmlem2 24782 ovolsslem 25418 uniioombllem3 25519 ulmres 26330 xrlimcnp 26911 pntlemq 27545 cusgredg 29404 sspba 30706 shlej2i 31358 chpssati 32342 iunrnmptss 32544 mptssALT 32649 pmtrcnelor 33063 rspectopn 33850 zarmxt1 33863 bnj1408 35019 subfacp1lem6 35165 mthmpps 35562 bj-gabss 36916 qsss1 38270 cossss 38409 disjdmqscossss 38788 aomclem4 43039 cotrclrcl 43724 ovnsslelem 46551 isubgredgss 47858 fldcALTV 48313 |
| Copyright terms: Public domain | W3C validator |