![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4025 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 |
This theorem is referenced by: rabss2 4087 unss2 4196 sslin 4250 intss 4973 ssopab2 5555 xpss12 5703 coss1 5868 coss2 5869 cnvss 5885 rnss 5952 ssres 6023 ssres2 6024 imass1 6121 imass2 6122 predpredss 6329 predrelss 6359 ssoprab2 7500 ressuppss 8206 tposss 8250 onovuni 8380 ss2ixp 8948 fodomfi 9347 fodomfiOLD 9367 coss12d 15007 isumsplit 15872 isumrpcl 15875 cvgrat 15915 gsumzf1o 19944 gsumzmhm 19969 gsumzinv 19977 fldc 20801 dsmmsubg 21780 qustgpopn 24143 metnrmlem2 24895 ovolsslem 25532 uniioombllem3 25633 ulmres 26445 xrlimcnp 27025 pntlemq 27659 cusgredg 29455 sspba 30755 shlej2i 31407 chpssati 32391 iunrnmptss 32585 mptssALT 32691 pmtrcnelor 33093 rspectopn 33827 zarmxt1 33840 bnj1408 35028 subfacp1lem6 35169 mthmpps 35566 bj-gabss 36917 qsss1 38270 cossss 38406 disjdmqscossss 38784 aomclem4 43045 cotrclrcl 43731 ovnsslelem 46515 isubgredgss 47788 uspgrimprop 47810 fldcALTV 48175 |
Copyright terms: Public domain | W3C validator |