![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4011 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: rabss2 4074 unss2 4180 sslin 4233 intss 4972 ssopab2 5545 xpss12 5690 coss1 5853 coss2 5854 cnvss 5870 rnss 5936 ssres 6006 ssres2 6007 imass1 6097 imass2 6098 predpredss 6304 predrelss 6335 ssoprab2 7473 ressuppss 8164 tposss 8208 onovuni 8338 ss2ixp 8900 fodomfi 9321 coss12d 14915 isumsplit 15782 isumrpcl 15785 cvgrat 15825 gsumzf1o 19774 gsumzmhm 19799 gsumzinv 19807 dsmmsubg 21289 qustgpopn 23615 metnrmlem2 24367 ovolsslem 24992 uniioombllem3 25093 ulmres 25891 xrlimcnp 26462 pntlemq 27093 cusgredg 28670 sspba 29967 shlej2i 30619 chpssati 31603 iunrnmptss 31784 mptssALT 31887 pmtrcnelor 32239 rspectopn 32835 zarmxt1 32848 bnj1408 34035 subfacp1lem6 34164 mthmpps 34561 bj-gabss 35803 qsss1 37145 cossss 37283 disjdmqscossss 37661 aomclem4 41784 cotrclrcl 42478 ovnsslelem 45262 fldc 46934 fldcALTV 46952 |
Copyright terms: Public domain | W3C validator |