| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3997 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 4000 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: rabss2 4053 unss2 4162 sslin 4218 intss 4945 ssopab2 5521 xpss12 5669 coss1 5835 coss2 5836 cnvss 5852 rnss 5919 ssres 5990 ssres2 5991 imass1 6088 imass2 6089 predpredss 6297 predrelss 6326 ssoprab2 7473 ressuppss 8180 tposss 8224 onovuni 8354 ss2ixp 8922 fodomfi 9320 fodomfiOLD 9340 coss12d 14989 isumsplit 15854 isumrpcl 15857 cvgrat 15897 gsumzf1o 19891 gsumzmhm 19916 gsumzinv 19924 fldc 20742 dsmmsubg 21701 qustgpopn 24056 metnrmlem2 24798 ovolsslem 25435 uniioombllem3 25536 ulmres 26347 xrlimcnp 26928 pntlemq 27562 cusgredg 29349 sspba 30654 shlej2i 31306 chpssati 32290 iunrnmptss 32492 mptssALT 32599 pmtrcnelor 33048 rspectopn 33844 zarmxt1 33857 bnj1408 35013 subfacp1lem6 35153 mthmpps 35550 bj-gabss 36899 qsss1 38253 cossss 38389 disjdmqscossss 38767 aomclem4 43028 cotrclrcl 43713 ovnsslelem 46537 isubgredgss 47826 fldcALTV 48255 |
| Copyright terms: Public domain | W3C validator |