| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3985 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 3988 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: rabss2 4041 unss2 4150 sslin 4206 intss 4933 ssopab2 5506 xpss12 5653 coss1 5819 coss2 5820 cnvss 5836 rnss 5903 ssres 5974 ssres2 5975 imass1 6072 imass2 6073 predpredss 6281 predrelss 6310 ssoprab2 7457 ressuppss 8162 tposss 8206 onovuni 8311 ss2ixp 8883 fodomfi 9261 fodomfiOLD 9281 coss12d 14938 isumsplit 15806 isumrpcl 15809 cvgrat 15849 gsumzf1o 19842 gsumzmhm 19867 gsumzinv 19875 fldc 20693 dsmmsubg 21652 qustgpopn 24007 metnrmlem2 24749 ovolsslem 25385 uniioombllem3 25486 ulmres 26297 xrlimcnp 26878 pntlemq 27512 cusgredg 29351 sspba 30656 shlej2i 31308 chpssati 32292 iunrnmptss 32494 mptssALT 32599 pmtrcnelor 33048 rspectopn 33857 zarmxt1 33870 bnj1408 35026 subfacp1lem6 35172 mthmpps 35569 bj-gabss 36923 qsss1 38277 cossss 38416 disjdmqscossss 38795 aomclem4 43046 cotrclrcl 43731 ovnsslelem 46558 isubgredgss 47865 fldcALTV 48320 |
| Copyright terms: Public domain | W3C validator |