![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4039 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: rabss2 4101 unss2 4210 sslin 4264 intss 4993 ssopab2 5565 xpss12 5715 coss1 5880 coss2 5881 cnvss 5897 rnss 5964 ssres 6033 ssres2 6034 imass1 6131 imass2 6132 predpredss 6339 predrelss 6369 ssoprab2 7518 ressuppss 8224 tposss 8268 onovuni 8398 ss2ixp 8968 fodomfi 9378 fodomfiOLD 9398 coss12d 15021 isumsplit 15888 isumrpcl 15891 cvgrat 15931 gsumzf1o 19954 gsumzmhm 19979 gsumzinv 19987 fldc 20807 dsmmsubg 21786 qustgpopn 24149 metnrmlem2 24901 ovolsslem 25538 uniioombllem3 25639 ulmres 26449 xrlimcnp 27029 pntlemq 27663 cusgredg 29459 sspba 30759 shlej2i 31411 chpssati 32395 iunrnmptss 32588 mptssALT 32693 pmtrcnelor 33084 rspectopn 33813 zarmxt1 33826 bnj1408 35012 subfacp1lem6 35153 mthmpps 35550 bj-gabss 36901 qsss1 38245 cossss 38381 disjdmqscossss 38759 aomclem4 43014 cotrclrcl 43704 ovnsslelem 46481 uspgrimprop 47757 fldcALTV 48055 |
Copyright terms: Public domain | W3C validator |