| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3974 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 3977 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: rabss2 4029 unss2 4138 sslin 4194 intss 4919 ssopab2 5489 xpss12 5634 coss1 5798 coss2 5799 cnvss 5815 rnss 5881 ssres 5954 ssres2 5955 imass1 6052 imass2 6053 predpredss 6256 predrelss 6285 ssoprab2 7417 ressuppss 8116 tposss 8160 onovuni 8265 ss2ixp 8837 fodomfi 9201 fodomfiOLD 9220 coss12d 14879 isumsplit 15747 isumrpcl 15750 cvgrat 15790 gsumzf1o 19791 gsumzmhm 19816 gsumzinv 19824 fldc 20669 dsmmsubg 21650 qustgpopn 24005 metnrmlem2 24747 ovolsslem 25383 uniioombllem3 25484 ulmres 26295 xrlimcnp 26876 pntlemq 27510 cusgredg 29369 sspba 30671 shlej2i 31323 chpssati 32307 iunrnmptss 32509 mptssALT 32619 pmtrcnelor 33034 rspectopn 33840 zarmxt1 33853 bnj1408 35009 subfacp1lem6 35168 mthmpps 35565 bj-gabss 36919 qsss1 38273 cossss 38412 disjdmqscossss 38791 aomclem4 43040 cotrclrcl 43725 ovnsslelem 46551 isubgredgss 47859 fldcALTV 48326 |
| Copyright terms: Public domain | W3C validator |