![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4012 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: rabss2 4075 unss2 4181 sslin 4234 intss 4973 ssopab2 5546 xpss12 5691 coss1 5855 coss2 5856 cnvss 5872 rnss 5938 ssres 6008 ssres2 6009 imass1 6100 imass2 6101 predpredss 6307 predrelss 6338 ssoprab2 7479 ressuppss 8170 tposss 8214 onovuni 8344 ss2ixp 8906 fodomfi 9327 coss12d 14923 isumsplit 15790 isumrpcl 15793 cvgrat 15833 gsumzf1o 19821 gsumzmhm 19846 gsumzinv 19854 dsmmsubg 21517 qustgpopn 23844 metnrmlem2 24596 ovolsslem 25225 uniioombllem3 25326 ulmres 26124 xrlimcnp 26697 pntlemq 27328 cusgredg 28936 sspba 30235 shlej2i 30887 chpssati 31871 iunrnmptss 32052 mptssALT 32155 pmtrcnelor 32510 rspectopn 33133 zarmxt1 33146 bnj1408 34333 subfacp1lem6 34462 mthmpps 34859 bj-gabss 36118 qsss1 37460 cossss 37598 disjdmqscossss 37976 aomclem4 42101 cotrclrcl 42795 ovnsslelem 45575 fldc 47070 fldcALTV 47088 |
Copyright terms: Public domain | W3C validator |