Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3947 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rabss2 4007 unss2 4111 sslin 4165 intss 4897 ssopab2 5452 xpss12 5595 coss1 5753 coss2 5754 cnvss 5770 rnss 5837 ssres 5907 ssres2 5908 imass1 5998 imass2 5999 predpredss 6198 ssoprab2 7321 ressuppss 7970 tposss 8014 onovuni 8144 ss2ixp 8656 fodomfi 9022 coss12d 14611 isumsplit 15480 isumrpcl 15483 cvgrat 15523 gsumzf1o 19428 gsumzmhm 19453 gsumzinv 19461 dsmmsubg 20860 qustgpopn 23179 metnrmlem2 23929 ovolsslem 24553 uniioombllem3 24654 ulmres 25452 xrlimcnp 26023 pntlemq 26654 cusgredg 27694 sspba 28990 shlej2i 29642 chpssati 30626 iunrnmptss 30806 mptssALT 30914 pmtrcnelor 31262 rspectopn 31719 zarmxt1 31732 bnj1408 32916 subfacp1lem6 33047 mthmpps 33444 bj-gabss 35050 qsss1 36350 cossss 36475 aomclem4 40798 cotrclrcl 41239 fldc 45529 fldcALTV 45547 |
Copyright terms: Public domain | W3C validator |