| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3988 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 3991 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: rabss2 4044 unss2 4153 sslin 4209 intss 4936 ssopab2 5509 xpss12 5656 coss1 5822 coss2 5823 cnvss 5839 rnss 5906 ssres 5977 ssres2 5978 imass1 6075 imass2 6076 predpredss 6284 predrelss 6313 ssoprab2 7460 ressuppss 8165 tposss 8209 onovuni 8314 ss2ixp 8886 fodomfi 9268 fodomfiOLD 9288 coss12d 14945 isumsplit 15813 isumrpcl 15816 cvgrat 15856 gsumzf1o 19849 gsumzmhm 19874 gsumzinv 19882 fldc 20700 dsmmsubg 21659 qustgpopn 24014 metnrmlem2 24756 ovolsslem 25392 uniioombllem3 25493 ulmres 26304 xrlimcnp 26885 pntlemq 27519 cusgredg 29358 sspba 30663 shlej2i 31315 chpssati 32299 iunrnmptss 32501 mptssALT 32606 pmtrcnelor 33055 rspectopn 33864 zarmxt1 33877 bnj1408 35033 subfacp1lem6 35179 mthmpps 35576 bj-gabss 36930 qsss1 38284 cossss 38423 disjdmqscossss 38802 aomclem4 43053 cotrclrcl 43738 ovnsslelem 46565 isubgredgss 47869 fldcALTV 48324 |
| Copyright terms: Public domain | W3C validator |