| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3968 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 4 | 3sstr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrrdi 3971 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: ss2rabdv 4021 rabss2 4024 rabss2OLD 4025 unss2 4134 sslin 4190 intss 4917 ssopab2 5484 xpss12 5629 coss1 5794 coss2 5795 cnvss 5811 rnss 5878 ssres 5951 ssres2 5952 imass1 6049 imass2 6050 predpredss 6255 predrelss 6284 ssoprab2 7414 ressuppss 8113 tposss 8157 onovuni 8262 ss2ixp 8834 fodomfi 9196 fodomfiOLD 9214 coss12d 14879 isumsplit 15747 isumrpcl 15750 cvgrat 15790 gsumzf1o 19824 gsumzmhm 19849 gsumzinv 19857 fldc 20699 dsmmsubg 21680 qustgpopn 24035 metnrmlem2 24776 ovolsslem 25412 uniioombllem3 25513 ulmres 26324 xrlimcnp 26905 pntlemq 27539 cusgredg 29402 sspba 30707 shlej2i 31359 chpssati 32343 iunrnmptss 32545 mptssALT 32657 pmtrcnelor 33060 rspectopn 33880 zarmxt1 33893 bnj1408 35048 subfacp1lem6 35229 mthmpps 35626 bj-gabss 36979 qsss1 38326 cossss 38526 disjdmqscossss 38900 aomclem4 43149 cotrclrcl 43834 ovnsslelem 46657 isubgredgss 47964 fldcALTV 48431 |
| Copyright terms: Public domain | W3C validator |