Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3905 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 237 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊆ wss 3841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-in 3848 df-ss 3858 |
This theorem is referenced by: rabss2 3965 unss2 4069 sslin 4123 intss 4854 ssopab2 5398 xpss12 5534 coss1 5692 coss2 5693 cnvss 5709 rnss 5776 ssres 5846 ssres2 5847 imass1 5932 imass2 5933 predpredss 6129 ssoprab2 7230 ressuppss 7871 tposss 7915 onovuni 8001 ss2ixp 8513 fodomfi 8863 coss12d 14414 isumsplit 15281 isumrpcl 15284 cvgrat 15324 gsumzf1o 19144 gsumzmhm 19169 gsumzinv 19177 dsmmsubg 20552 qustgpopn 22864 metnrmlem2 23605 ovolsslem 24229 uniioombllem3 24330 ulmres 25127 xrlimcnp 25698 pntlemq 26329 cusgredg 27358 sspba 28654 shlej2i 29306 chpssati 30290 iunrnmptss 30471 mptssALT 30579 pmtrcnelor 30929 rspectopn 31381 zarmxt1 31394 bnj1408 32579 subfacp1lem6 32710 mthmpps 33107 qsss1 36035 cossss 36160 aomclem4 40438 cotrclrcl 40880 fldc 45159 fldcALTV 45177 |
Copyright terms: Public domain | W3C validator |