| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eleq1 2828 | . . . . 5
⊢ (𝑦 = 𝑋 → (𝑦 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | 
| 2 |  | predeq3 6324 | . . . . . 6
⊢ (𝑦 = 𝑋 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑋)) | 
| 3 |  | predeq3 6324 | . . . . . 6
⊢ (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋)) | 
| 4 | 2, 3 | eqeq12d 2752 | . . . . 5
⊢ (𝑦 = 𝑋 → (Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦) ↔ Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))) | 
| 5 | 1, 4 | imbi12d 344 | . . . 4
⊢ (𝑦 = 𝑋 → ((𝑦 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)) ↔ (𝑋 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))) | 
| 6 | 5 | imbi2d 340 | . . 3
⊢ (𝑦 = 𝑋 → (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))) ↔ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))))) | 
| 7 |  | predpredss 6327 | . . . . . 6
⊢ (𝐵 ⊆ 𝐴 → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦)) | 
| 8 | 7 | ad2antrr 726 | . . . . 5
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦 ∈ 𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦)) | 
| 9 |  | predeq3 6324 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑦)) | 
| 10 | 9 | sseq1d 4014 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)) | 
| 11 | 10 | rspccva 3620 | . . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) | 
| 12 | 11 | sseld 3981 | . . . . . . . . 9
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ 𝐵)) | 
| 13 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 14 | 13 | elpredim 6336 | . . . . . . . . 9
⊢ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝑅𝑦) | 
| 15 | 12, 14 | jca2 513 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧 ∈ 𝐵 ∧ 𝑧𝑅𝑦))) | 
| 16 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 17 | 16 | elpred 6337 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → (𝑧 ∈ Pred(𝑅, 𝐵, 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧𝑅𝑦))) | 
| 18 | 17 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧 ∈ 𝐵 ∧ 𝑧𝑅𝑦)))) | 
| 19 | 18 | adantl 481 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧 ∈ 𝐵 ∧ 𝑧𝑅𝑦)))) | 
| 20 | 15, 19 | mpbird 257 | . . . . . . 7
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦))) | 
| 21 | 20 | ssrdv 3988 | . . . . . 6
⊢
((∀𝑥 ∈
𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦)) | 
| 22 | 21 | adantll 714 | . . . . 5
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦 ∈ 𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦)) | 
| 23 | 8, 22 | eqssd 4000 | . . . 4
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦 ∈ 𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)) | 
| 24 | 23 | ex 412 | . . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))) | 
| 25 | 6, 24 | vtoclg 3553 | . 2
⊢ (𝑋 ∈ 𝐵 → ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))) | 
| 26 | 25 | pm2.43b 55 | 1
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋 ∈ 𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))) |