MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preddowncl Structured version   Visualization version   GIF version

Theorem preddowncl 6235
Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.)
Assertion
Ref Expression
preddowncl ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem preddowncl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . 5 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
2 predeq3 6206 . . . . . 6 (𝑦 = 𝑋 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑋))
3 predeq3 6206 . . . . . 6 (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋))
42, 3eqeq12d 2754 . . . . 5 (𝑦 = 𝑋 → (Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦) ↔ Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
51, 4imbi12d 345 . . . 4 (𝑦 = 𝑋 → ((𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)) ↔ (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))))
65imbi2d 341 . . 3 (𝑦 = 𝑋 → (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))) ↔ ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))))
7 predpredss 6209 . . . . . 6 (𝐵𝐴 → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦))
87ad2antrr 723 . . . . 5 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦))
9 predeq3 6206 . . . . . . . . . . . 12 (𝑥 = 𝑦 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑦))
109sseq1d 3952 . . . . . . . . . . 11 (𝑥 = 𝑦 → (Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
1110rspccva 3560 . . . . . . . . . 10 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
1211sseld 3920 . . . . . . . . 9 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝐵))
13 vex 3436 . . . . . . . . . 10 𝑦 ∈ V
1413elpredim 6218 . . . . . . . . 9 (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝑅𝑦)
1512, 14jca2 514 . . . . . . . 8 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦)))
16 vex 3436 . . . . . . . . . . 11 𝑧 ∈ V
1716elpred 6219 . . . . . . . . . 10 (𝑦𝐵 → (𝑧 ∈ Pred(𝑅, 𝐵, 𝑦) ↔ (𝑧𝐵𝑧𝑅𝑦)))
1817imbi2d 341 . . . . . . . . 9 (𝑦𝐵 → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦))))
1918adantl 482 . . . . . . . 8 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦))))
2015, 19mpbird 256 . . . . . . 7 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)))
2120ssrdv 3927 . . . . . 6 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦))
2221adantll 711 . . . . 5 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦))
238, 22eqssd 3938 . . . 4 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))
2423ex 413 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)))
256, 24vtoclg 3505 . 2 (𝑋𝐵 → ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))))
2625pm2.43b 55 1 ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  frrlem4  8105  wfrlem4OLD  8143
  Copyright terms: Public domain W3C validator