Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq1i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq1i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq1 4681 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {cpr 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3903 df-sn 4574 df-pr 4576 |
This theorem is referenced by: funopg 6518 frcond1 28918 n4cyclfrgr 28943 disjdifprg2 31202 |
Copyright terms: Public domain | W3C validator |