| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq1i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq1 4686 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: funopg 6515 frcond1 30244 n4cyclfrgr 30269 disjdifprg2 32554 |
| Copyright terms: Public domain | W3C validator |