MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq1i Structured version   Visualization version   GIF version

Theorem preq1i 4717
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypothesis
Ref Expression
preq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
preq1i {𝐴, 𝐶} = {𝐵, 𝐶}

Proof of Theorem preq1i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq1 4714 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
31, 2ax-mp 5 1 {𝐴, 𝐶} = {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by:  funopg  6575  frcond1  30252  n4cyclfrgr  30277  disjdifprg2  32562
  Copyright terms: Public domain W3C validator