Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq1i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq1i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq1 4666 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: funopg 6452 frcond1 28531 n4cyclfrgr 28556 disjdifprg2 30816 |
Copyright terms: Public domain | W3C validator |