MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq1i Structured version   Visualization version   GIF version

Theorem preq1i 4690
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypothesis
Ref Expression
preq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
preq1i {𝐴, 𝐶} = {𝐵, 𝐶}

Proof of Theorem preq1i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq1 4687 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
31, 2ax-mp 5 1 {𝐴, 𝐶} = {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cpr 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-sn 4578  df-pr 4580
This theorem is referenced by:  funopg  6522  frcond1  30250  n4cyclfrgr  30275  disjdifprg2  32560
  Copyright terms: Public domain W3C validator