Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq1 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
preq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4535 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | uneq1d 4069 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶})) |
3 | df-pr 4528 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
4 | df-pr 4528 | . 2 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
5 | 2, 3, 4 | 3eqtr4g 2818 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Copyright terms: Public domain | W3C validator |