Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifprg2 Structured version   Visualization version   GIF version

Theorem disjdifprg2 32567
Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
disjdifprg2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem disjdifprg2
StepHypRef Expression
1 inex1g 5261 . . 3 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 elex 3459 . . 3 (𝐴𝑉𝐴 ∈ V)
3 disjdifprg 32566 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
41, 2, 3syl2anc 584 . 2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
5 difin 4223 . . . . 5 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
65preq1i 4690 . . . 4 {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)}
76a1i 11 . . 3 (𝐴𝑉 → {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
87disjeq1d 5070 . 2 (𝐴𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
94, 8mpbid 232 1 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3438  cdif 3896  cin 3898  {cpr 4579  Disj wdisj 5062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-sn 4578  df-pr 4580  df-disj 5063
This theorem is referenced by:  measxun2  34234
  Copyright terms: Public domain W3C validator