| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifprg2 | Structured version Visualization version GIF version | ||
| Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| disjdifprg2 | ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1g 5261 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 2 | elex 3459 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | disjdifprg 32566 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) |
| 5 | difin 4223 | . . . . 5 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | 5 | preq1i 4690 | . . . 4 ⊢ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)} |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 8 | 7 | disjeq1d 5070 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
| 9 | 4, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∖ cdif 3896 ∩ cin 3898 {cpr 4579 Disj wdisj 5062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-sn 4578 df-pr 4580 df-disj 5063 |
| This theorem is referenced by: measxun2 34234 |
| Copyright terms: Public domain | W3C validator |