| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifprg2 | Structured version Visualization version GIF version | ||
| Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| disjdifprg2 | ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1g 5289 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 2 | elex 3480 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | disjdifprg 32556 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) |
| 5 | difin 4247 | . . . . 5 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | 5 | preq1i 4712 | . . . 4 ⊢ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)} |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 8 | 7 | disjeq1d 5094 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
| 9 | 4, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 {cpr 4603 Disj wdisj 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-disj 5087 |
| This theorem is referenced by: measxun2 34241 |
| Copyright terms: Public domain | W3C validator |