Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifprg2 Structured version   Visualization version   GIF version

Theorem disjdifprg2 32351
Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
disjdifprg2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem disjdifprg2
StepHypRef Expression
1 inex1g 5313 . . 3 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 elex 3488 . . 3 (𝐴𝑉𝐴 ∈ V)
3 disjdifprg 32350 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
41, 2, 3syl2anc 583 . 2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
5 difin 4257 . . . . 5 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
65preq1i 4736 . . . 4 {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)}
76a1i 11 . . 3 (𝐴𝑉 → {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
87disjeq1d 5115 . 2 (𝐴𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
94, 8mpbid 231 1 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cdif 3941  cin 3943  {cpr 4626  Disj wdisj 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-sn 4625  df-pr 4627  df-disj 5108
This theorem is referenced by:  measxun2  33765
  Copyright terms: Public domain W3C validator