Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifprg2 | Structured version Visualization version GIF version |
Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
disjdifprg2 | ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
2 | elex 3448 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | disjdifprg 30893 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) |
5 | difin 4200 | . . . . 5 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
6 | 5 | preq1i 4677 | . . . 4 ⊢ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)} |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
8 | 7 | disjeq1d 5051 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ∩ cin 3890 {cpr 4568 Disj wdisj 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 df-disj 5044 |
This theorem is referenced by: measxun2 32157 |
Copyright terms: Public domain | W3C validator |