Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifprg2 | Structured version Visualization version GIF version |
Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
disjdifprg2 | ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5264 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
2 | elex 3459 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | disjdifprg 31201 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥) |
5 | difin 4209 | . . . . 5 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
6 | 5 | preq1i 4685 | . . . 4 ⊢ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)} |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
8 | 7 | disjeq1d 5066 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴 ∩ 𝐵)), (𝐴 ∩ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3895 ∩ cin 3897 {cpr 4576 Disj wdisj 5058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rmo 3349 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-sn 4575 df-pr 4577 df-disj 5059 |
This theorem is referenced by: measxun2 32476 |
Copyright terms: Public domain | W3C validator |