Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifprg2 Structured version   Visualization version   GIF version

Theorem disjdifprg2 32596
Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
disjdifprg2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem disjdifprg2
StepHypRef Expression
1 inex1g 5325 . . 3 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 elex 3499 . . 3 (𝐴𝑉𝐴 ∈ V)
3 disjdifprg 32595 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐴 ∈ V) → Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
41, 2, 3syl2anc 584 . 2 (𝐴𝑉Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥)
5 difin 4278 . . . . 5 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
65preq1i 4741 . . . 4 {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)}
76a1i 11 . . 3 (𝐴𝑉 → {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
87disjeq1d 5123 . 2 (𝐴𝑉 → (Disj 𝑥 ∈ {(𝐴 ∖ (𝐴𝐵)), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
94, 8mpbid 232 1 (𝐴𝑉Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cin 3962  {cpr 4633  Disj wdisj 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-disj 5116
This theorem is referenced by:  measxun2  34191
  Copyright terms: Public domain W3C validator