Step | Hyp | Ref
| Expression |
1 | | frcond1.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frcond1.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | isfrgr 28624 |
. 2
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸)) |
4 | | preq2 4670 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → {𝑏, 𝑘} = {𝑏, 𝐴}) |
5 | 4 | preq1d 4675 |
. . . . . 6
⊢ (𝑘 = 𝐴 → {{𝑏, 𝑘}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝑙}}) |
6 | 5 | sseq1d 3952 |
. . . . 5
⊢ (𝑘 = 𝐴 → ({{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸)) |
7 | 6 | reubidv 3323 |
. . . 4
⊢ (𝑘 = 𝐴 → (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏 ∈ 𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸)) |
8 | | preq2 4670 |
. . . . . . 7
⊢ (𝑙 = 𝐶 → {𝑏, 𝑙} = {𝑏, 𝐶}) |
9 | 8 | preq2d 4676 |
. . . . . 6
⊢ (𝑙 = 𝐶 → {{𝑏, 𝐴}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝐶}}) |
10 | 9 | sseq1d 3952 |
. . . . 5
⊢ (𝑙 = 𝐶 → ({{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸)) |
11 | 10 | reubidv 3323 |
. . . 4
⊢ (𝑙 = 𝐶 → (∃!𝑏 ∈ 𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏 ∈ 𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸)) |
12 | | simp1 1135 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑉) |
13 | | sneq 4571 |
. . . . . 6
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
14 | 13 | difeq2d 4057 |
. . . . 5
⊢ (𝑘 = 𝐴 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴})) |
15 | 14 | adantl 482 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) ∧ 𝑘 = 𝐴) → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴})) |
16 | | necom 2997 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
17 | 16 | biimpi 215 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐶 → 𝐶 ≠ 𝐴) |
18 | 17 | anim2i 617 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐴)) |
19 | 18 | 3adant1 1129 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐴)) |
20 | | eldifsn 4720 |
. . . . 5
⊢ (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐴)) |
21 | 19, 20 | sylibr 233 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴})) |
22 | 7, 11, 12, 15, 21 | rspc2vd 3883 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → (∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ∃!𝑏 ∈ 𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸)) |
23 | | prcom 4668 |
. . . . . . 7
⊢ {𝑏, 𝐴} = {𝐴, 𝑏} |
24 | 23 | preq1i 4672 |
. . . . . 6
⊢ {{𝑏, 𝐴}, {𝑏, 𝐶}} = {{𝐴, 𝑏}, {𝑏, 𝐶}} |
25 | 24 | sseq1i 3949 |
. . . . 5
⊢ ({{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
26 | 25 | reubii 3325 |
. . . 4
⊢
(∃!𝑏 ∈
𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
27 | 26 | biimpi 215 |
. . 3
⊢
(∃!𝑏 ∈
𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
28 | 22, 27 | syl6com 37 |
. 2
⊢
(∀𝑘 ∈
𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
29 | 3, 28 | simplbiim 505 |
1
⊢ (𝐺 ∈ FriendGraph →
((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |