MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond1 Structured version   Visualization version   GIF version

Theorem frcond1 29213
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐸,𝑏   𝐺,𝑏   𝑉,𝑏

Proof of Theorem frcond1
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . 3 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . 3 𝐸 = (Edg‘𝐺)
31, 2isfrgr 29207 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸))
4 preq2 4696 . . . . . . 7 (𝑘 = 𝐴 → {𝑏, 𝑘} = {𝑏, 𝐴})
54preq1d 4701 . . . . . 6 (𝑘 = 𝐴 → {{𝑏, 𝑘}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝑙}})
65sseq1d 3976 . . . . 5 (𝑘 = 𝐴 → ({{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
76reubidv 3372 . . . 4 (𝑘 = 𝐴 → (∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
8 preq2 4696 . . . . . . 7 (𝑙 = 𝐶 → {𝑏, 𝑙} = {𝑏, 𝐶})
98preq2d 4702 . . . . . 6 (𝑙 = 𝐶 → {{𝑏, 𝐴}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝐶}})
109sseq1d 3976 . . . . 5 (𝑙 = 𝐶 → ({{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
1110reubidv 3372 . . . 4 (𝑙 = 𝐶 → (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
12 simp1 1137 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐴𝑉)
13 sneq 4597 . . . . . 6 (𝑘 = 𝐴 → {𝑘} = {𝐴})
1413difeq2d 4083 . . . . 5 (𝑘 = 𝐴 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
1514adantl 483 . . . 4 (((𝐴𝑉𝐶𝑉𝐴𝐶) ∧ 𝑘 = 𝐴) → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
16 necom 2998 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
1716biimpi 215 . . . . . . 7 (𝐴𝐶𝐶𝐴)
1817anim2i 618 . . . . . 6 ((𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
19183adant1 1131 . . . . 5 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
20 eldifsn 4748 . . . . 5 (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶𝑉𝐶𝐴))
2119, 20sylibr 233 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴}))
227, 11, 12, 15, 21rspc2vd 3907 . . 3 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
23 prcom 4694 . . . . . . 7 {𝑏, 𝐴} = {𝐴, 𝑏}
2423preq1i 4698 . . . . . 6 {{𝑏, 𝐴}, {𝑏, 𝐶}} = {{𝐴, 𝑏}, {𝑏, 𝐶}}
2524sseq1i 3973 . . . . 5 ({{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2625reubii 3363 . . . 4 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2726biimpi 215 . . 3 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2822, 27syl6com 37 . 2 (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
293, 28simplbiim 506 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  wral 3065  ∃!wreu 3352  cdif 3908  wss 3911  {csn 4587  {cpr 4589  cfv 6497  Vtxcvtx 27950  Edgcedg 28001  USGraphcusgr 28103   FriendGraph cfrgr 29205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-nul 5264
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-frgr 29206
This theorem is referenced by:  frcond2  29214  frcond3  29216  4cyclusnfrgr  29239  frgrncvvdeqlem2  29247
  Copyright terms: Public domain W3C validator