MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond1 Structured version   Visualization version   GIF version

Theorem frcond1 30298
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐸,𝑏   𝐺,𝑏   𝑉,𝑏

Proof of Theorem frcond1
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . 3 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . 3 𝐸 = (Edg‘𝐺)
31, 2isfrgr 30292 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸))
4 preq2 4759 . . . . . . 7 (𝑘 = 𝐴 → {𝑏, 𝑘} = {𝑏, 𝐴})
54preq1d 4764 . . . . . 6 (𝑘 = 𝐴 → {{𝑏, 𝑘}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝑙}})
65sseq1d 4040 . . . . 5 (𝑘 = 𝐴 → ({{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
76reubidv 3406 . . . 4 (𝑘 = 𝐴 → (∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
8 preq2 4759 . . . . . . 7 (𝑙 = 𝐶 → {𝑏, 𝑙} = {𝑏, 𝐶})
98preq2d 4765 . . . . . 6 (𝑙 = 𝐶 → {{𝑏, 𝐴}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝐶}})
109sseq1d 4040 . . . . 5 (𝑙 = 𝐶 → ({{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
1110reubidv 3406 . . . 4 (𝑙 = 𝐶 → (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
12 simp1 1136 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐴𝑉)
13 sneq 4658 . . . . . 6 (𝑘 = 𝐴 → {𝑘} = {𝐴})
1413difeq2d 4149 . . . . 5 (𝑘 = 𝐴 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
1514adantl 481 . . . 4 (((𝐴𝑉𝐶𝑉𝐴𝐶) ∧ 𝑘 = 𝐴) → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
16 necom 3000 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
1716biimpi 216 . . . . . . 7 (𝐴𝐶𝐶𝐴)
1817anim2i 616 . . . . . 6 ((𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
19183adant1 1130 . . . . 5 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
20 eldifsn 4811 . . . . 5 (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶𝑉𝐶𝐴))
2119, 20sylibr 234 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴}))
227, 11, 12, 15, 21rspc2vd 3972 . . 3 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
23 prcom 4757 . . . . . . 7 {𝑏, 𝐴} = {𝐴, 𝑏}
2423preq1i 4761 . . . . . 6 {{𝑏, 𝐴}, {𝑏, 𝐶}} = {{𝐴, 𝑏}, {𝑏, 𝐶}}
2524sseq1i 4037 . . . . 5 ({{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2625reubii 3397 . . . 4 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2726biimpi 216 . . 3 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2822, 27syl6com 37 . 2 (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
293, 28simplbiim 504 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  ∃!wreu 3386  cdif 3973  wss 3976  {csn 4648  {cpr 4650  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-frgr 30291
This theorem is referenced by:  frcond2  30299  frcond3  30301  4cyclusnfrgr  30324  frgrncvvdeqlem2  30332
  Copyright terms: Public domain W3C validator