| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4700 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4701 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2785 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: preq12i 4705 preq12d 4708 ssprsseq 4792 preq12b 4817 prnebg 4823 preq12nebg 4830 opthprneg 4832 elpr2elpr 4836 relop 5817 opthreg 9578 hashle2pr 14449 wwlktovfo 14931 joinval 18343 meetval 18357 ipole 18500 sylow1 19540 frgpuplem 19709 uspgr2wlkeq 29581 wlkres 29605 wlkp1lem8 29615 usgr2pthlem 29700 2wlkdlem10 29872 1wlkdlem4 30076 3wlkdlem6 30101 3wlkdlem10 30105 pfxwlk 35118 oppr 47035 imarnf1pr 47287 elsprel 47480 sprsymrelf1lem 47496 sprsymrelf 47500 paireqne 47516 sbcpr 47526 isuspgrimlem 47899 grtrif1o 47945 |
| Copyright terms: Public domain | W3C validator |