![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4738 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4739 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2793 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-sn 4630 df-pr 4632 |
This theorem is referenced by: preq12i 4743 preq12d 4746 ssprsseq 4829 preq12b 4852 prnebg 4857 preq12nebg 4864 opthprneg 4866 relop 5851 opthreg 9613 hashle2pr 14438 wwlktovfo 14909 joinval 18330 meetval 18344 ipole 18487 sylow1 19471 frgpuplem 19640 uspgr2wlkeq 28903 wlkres 28927 wlkp1lem8 28937 usgr2pthlem 29020 2wlkdlem10 29189 1wlkdlem4 29393 3wlkdlem6 29418 3wlkdlem10 29422 pfxwlk 34114 oppr 45740 imarnf1pr 45990 elsprel 46143 sprsymrelf1lem 46159 sprsymrelf 46163 paireqne 46179 sbcpr 46189 isomuspgrlem2b 46497 isomuspgrlem2d 46499 |
Copyright terms: Public domain | W3C validator |