| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4686 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4687 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: preq12i 4691 preq12d 4694 ssprsseq 4777 preq12b 4802 prnebg 4808 preq12nebg 4815 opthprneg 4817 elpr2elpr 4821 relop 5790 opthreg 9508 hashle2pr 14384 wwlktovfo 14865 joinval 18281 meetval 18295 ipole 18440 sylow1 19516 frgpuplem 19685 uspgr2wlkeq 29625 wlkres 29648 wlkp1lem8 29658 usgr2pthlem 29742 2wlkdlem10 29914 1wlkdlem4 30118 3wlkdlem6 30143 3wlkdlem10 30147 pfxwlk 35166 oppr 47067 imarnf1pr 47319 elsprel 47512 sprsymrelf1lem 47528 sprsymrelf 47532 paireqne 47548 sbcpr 47558 isuspgrimlem 47932 grtrif1o 47979 |
| Copyright terms: Public domain | W3C validator |