Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4626 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4627 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2813 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 {cpr 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-sn 4523 df-pr 4525 |
This theorem is referenced by: preq12i 4631 preq12d 4634 ssprsseq 4715 preq12b 4738 prnebg 4743 preq12nebg 4750 opthprneg 4752 snex 5300 relop 5690 opthreg 9114 hashle2pr 13887 wwlktovfo 14369 joinval 17681 meetval 17695 ipole 17834 sylow1 18795 frgpuplem 18965 uspgr2wlkeq 27534 wlkres 27559 wlkp1lem8 27569 usgr2pthlem 27651 2wlkdlem10 27820 1wlkdlem4 28024 3wlkdlem6 28049 3wlkdlem10 28053 pfxwlk 32601 oppr 43988 imarnf1pr 44206 elsprel 44360 sprsymrelf1lem 44376 sprsymrelf 44380 paireqne 44396 sbcpr 44406 isomuspgrlem2b 44714 isomuspgrlem2d 44716 |
Copyright terms: Public domain | W3C validator |