| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4687 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4688 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2788 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: preq12i 4692 preq12d 4695 ssprsseq 4778 preq12b 4803 prnebg 4809 preq12nebg 4816 opthprneg 4818 elpr2elpr 4822 relop 5796 opthreg 9517 hashle2pr 14388 wwlktovfo 14869 joinval 18285 meetval 18299 ipole 18444 sylow1 19519 frgpuplem 19688 uspgr2wlkeq 29628 wlkres 29651 wlkp1lem8 29661 usgr2pthlem 29745 2wlkdlem10 29917 1wlkdlem4 30124 3wlkdlem6 30149 3wlkdlem10 30153 pfxwlk 35191 oppr 47157 imarnf1pr 47409 elsprel 47602 sprsymrelf1lem 47618 sprsymrelf 47622 paireqne 47638 sbcpr 47648 isuspgrimlem 48022 grtrif1o 48069 |
| Copyright terms: Public domain | W3C validator |