![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4738 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4739 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2795 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: preq12i 4743 preq12d 4746 ssprsseq 4830 preq12b 4855 prnebg 4861 preq12nebg 4868 opthprneg 4870 elpr2elpr 4874 relop 5864 opthreg 9656 hashle2pr 14513 wwlktovfo 14994 joinval 18435 meetval 18449 ipole 18592 sylow1 19636 frgpuplem 19805 uspgr2wlkeq 29679 wlkres 29703 wlkp1lem8 29713 usgr2pthlem 29796 2wlkdlem10 29965 1wlkdlem4 30169 3wlkdlem6 30194 3wlkdlem10 30198 pfxwlk 35108 oppr 46980 imarnf1pr 47232 elsprel 47400 sprsymrelf1lem 47416 sprsymrelf 47420 paireqne 47436 sbcpr 47446 isuspgrimlem 47812 grtrif1o 47847 |
Copyright terms: Public domain | W3C validator |