Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4669 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4670 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2798 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: preq12i 4674 preq12d 4677 ssprsseq 4758 preq12b 4781 prnebg 4786 preq12nebg 4793 opthprneg 4795 snex 5354 relop 5759 opthreg 9376 hashle2pr 14191 wwlktovfo 14673 joinval 18095 meetval 18109 ipole 18252 sylow1 19208 frgpuplem 19378 uspgr2wlkeq 28013 wlkres 28038 wlkp1lem8 28048 usgr2pthlem 28131 2wlkdlem10 28300 1wlkdlem4 28504 3wlkdlem6 28529 3wlkdlem10 28533 pfxwlk 33085 oppr 44524 imarnf1pr 44774 elsprel 44927 sprsymrelf1lem 44943 sprsymrelf 44947 paireqne 44963 sbcpr 44973 isomuspgrlem2b 45281 isomuspgrlem2d 45283 |
Copyright terms: Public domain | W3C validator |