![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4488 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4489 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2881 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 {cpr 4401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-un 3803 df-sn 4400 df-pr 4402 |
This theorem is referenced by: preq12i 4493 preq12d 4496 ssprsseq 4576 preq12b 4599 prnebg 4606 preq12nebg 4615 opthprneg 4617 snex 5131 relop 5509 opthreg 8797 opthregOLD 8799 hashle2pr 13555 wwlktovfo 14087 joinval 17365 meetval 17379 ipole 17518 sylow1 18376 frgpuplem 18545 uspgr2wlkeq 26950 wlkres 26976 wlkresOLD 26978 wlkp1lem8 26988 usgr2pthlem 27072 2wlkdlem10 27271 1wlkdlem4 27512 3wlkdlem6 27537 3wlkdlem10 27541 imarnf1pr 42179 paireqne 42275 isomuspgrlem2b 42561 isomuspgrlem2d 42563 elsprel 42586 sprsymrelf1lem 42602 sprsymrelf 42606 |
Copyright terms: Public domain | W3C validator |