| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4709 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4710 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2790 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: preq12i 4714 preq12d 4717 ssprsseq 4801 preq12b 4826 prnebg 4832 preq12nebg 4839 opthprneg 4841 elpr2elpr 4845 relop 5830 opthreg 9632 hashle2pr 14495 wwlktovfo 14977 joinval 18387 meetval 18401 ipole 18544 sylow1 19584 frgpuplem 19753 uspgr2wlkeq 29626 wlkres 29650 wlkp1lem8 29660 usgr2pthlem 29745 2wlkdlem10 29917 1wlkdlem4 30121 3wlkdlem6 30146 3wlkdlem10 30150 pfxwlk 35146 oppr 47059 imarnf1pr 47311 elsprel 47489 sprsymrelf1lem 47505 sprsymrelf 47509 paireqne 47525 sbcpr 47535 isuspgrimlem 47908 grtrif1o 47954 |
| Copyright terms: Public domain | W3C validator |