![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4758 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4759 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2800 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: preq12i 4763 preq12d 4766 ssprsseq 4850 preq12b 4875 prnebg 4880 preq12nebg 4887 opthprneg 4889 elpr2elpr 4893 relop 5875 opthreg 9687 hashle2pr 14526 wwlktovfo 15007 joinval 18447 meetval 18461 ipole 18604 sylow1 19645 frgpuplem 19814 uspgr2wlkeq 29682 wlkres 29706 wlkp1lem8 29716 usgr2pthlem 29799 2wlkdlem10 29968 1wlkdlem4 30172 3wlkdlem6 30197 3wlkdlem10 30201 pfxwlk 35091 oppr 46945 imarnf1pr 47197 elsprel 47349 sprsymrelf1lem 47365 sprsymrelf 47369 paireqne 47385 sbcpr 47395 isuspgrimlem 47758 grtrif1o 47793 |
Copyright terms: Public domain | W3C validator |