| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4697 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4698 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: preq12i 4702 preq12d 4705 ssprsseq 4789 preq12b 4814 prnebg 4820 preq12nebg 4827 opthprneg 4829 elpr2elpr 4833 relop 5814 opthreg 9571 hashle2pr 14442 wwlktovfo 14924 joinval 18336 meetval 18350 ipole 18493 sylow1 19533 frgpuplem 19702 uspgr2wlkeq 29574 wlkres 29598 wlkp1lem8 29608 usgr2pthlem 29693 2wlkdlem10 29865 1wlkdlem4 30069 3wlkdlem6 30094 3wlkdlem10 30098 pfxwlk 35111 oppr 47031 imarnf1pr 47283 elsprel 47476 sprsymrelf1lem 47492 sprsymrelf 47496 paireqne 47512 sbcpr 47522 isuspgrimlem 47895 grtrif1o 47941 |
| Copyright terms: Public domain | W3C validator |