| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4687 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 2 | preq2 4688 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: preq12i 4692 preq12d 4695 ssprsseq 4779 preq12b 4804 prnebg 4810 preq12nebg 4817 opthprneg 4819 elpr2elpr 4823 relop 5797 opthreg 9533 hashle2pr 14402 wwlktovfo 14883 joinval 18299 meetval 18313 ipole 18458 sylow1 19500 frgpuplem 19669 uspgr2wlkeq 29609 wlkres 29632 wlkp1lem8 29642 usgr2pthlem 29726 2wlkdlem10 29898 1wlkdlem4 30102 3wlkdlem6 30127 3wlkdlem10 30131 pfxwlk 35099 oppr 47018 imarnf1pr 47270 elsprel 47463 sprsymrelf1lem 47479 sprsymrelf 47483 paireqne 47499 sbcpr 47509 isuspgrimlem 47883 grtrif1o 47930 |
| Copyright terms: Public domain | W3C validator |