Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4666 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4667 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: preq12i 4671 preq12d 4674 ssprsseq 4755 preq12b 4778 prnebg 4783 preq12nebg 4790 opthprneg 4792 snex 5349 relop 5748 opthreg 9306 hashle2pr 14119 wwlktovfo 14601 joinval 18010 meetval 18024 ipole 18167 sylow1 19123 frgpuplem 19293 uspgr2wlkeq 27915 wlkres 27940 wlkp1lem8 27950 usgr2pthlem 28032 2wlkdlem10 28201 1wlkdlem4 28405 3wlkdlem6 28430 3wlkdlem10 28434 pfxwlk 32985 oppr 44411 imarnf1pr 44661 elsprel 44815 sprsymrelf1lem 44831 sprsymrelf 44835 paireqne 44851 sbcpr 44861 isomuspgrlem2b 45169 isomuspgrlem2d 45171 |
Copyright terms: Public domain | W3C validator |