![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq2 4759 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: opidg 4916 funopg 6612 df2o2 8531 fz12pr 13641 fz0to3un2pr 13686 fz0to4untppr 13687 fzo13pr 13800 fzo0to2pr 13801 fzo0to42pr 13803 bpoly3 16106 prmreclem2 16964 2strstr1OLD 17284 mgmnsgrpex 18966 sgrpnmndex 18967 m2detleiblem2 22655 txindis 23663 setsvtx 29070 uhgrwkspthlem2 29790 31prm 47471 nnsum3primes4 47662 nnsum3primesgbe 47666 |
Copyright terms: Public domain | W3C validator |