| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq2 4710 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: opidg 4868 funopg 6570 df2o2 8489 fz12pr 13598 fz0to3un2pr 13646 fz0to4untppr 13647 fzo13pr 13765 fzo0to2pr 13766 fz01pr 13767 fzo0to42pr 13769 bpoly3 16074 prmreclem2 16937 mgmnsgrpex 18909 sgrpnmndex 18910 m2detleiblem2 22566 txindis 23572 setsvtx 29014 uhgrwkspthlem2 29736 31prm 47611 nnsum3primes4 47802 nnsum3primesgbe 47806 |
| Copyright terms: Public domain | W3C validator |