Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq2 4670 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: opidg 4823 funopg 6468 df2o2 8306 fz12pr 13313 fz0to3un2pr 13358 fz0to4untppr 13359 fzo13pr 13471 fzo0to2pr 13472 fzo0to42pr 13474 bpoly3 15768 prmreclem2 16618 2strstr1OLD 16938 mgmnsgrpex 18570 sgrpnmndex 18571 m2detleiblem2 21777 txindis 22785 setsvtx 27405 uhgrwkspthlem2 28122 31prm 45049 nnsum3primes4 45240 nnsum3primesgbe 45244 |
Copyright terms: Public domain | W3C validator |