![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq2 4734 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-sn 4625 df-pr 4627 |
This theorem is referenced by: opidg 4888 funopg 6581 df2o2 8489 fz12pr 13584 fz0to3un2pr 13629 fz0to4untppr 13630 fzo13pr 13742 fzo0to2pr 13743 fzo0to42pr 13745 bpoly3 16028 prmreclem2 16879 2strstr1OLD 17199 mgmnsgrpex 18876 sgrpnmndex 18877 m2detleiblem2 22523 txindis 23531 setsvtx 28841 uhgrwkspthlem2 29561 31prm 46931 nnsum3primes4 47122 nnsum3primesgbe 47126 |
Copyright terms: Public domain | W3C validator |