| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq2 4688 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: opidg 4846 funopg 6520 df2o2 8404 fz12pr 13503 fz0to3un2pr 13551 fz0to4untppr 13552 fzo13pr 13671 fzo0to2pr 13672 fz01pr 13673 fzo0to42pr 13675 bpoly3 15984 prmreclem2 16848 mgmnsgrpex 18824 sgrpnmndex 18825 m2detleiblem2 22532 txindis 23538 setsvtx 28999 uhgrwkspthlem2 29718 31prm 47601 nnsum3primes4 47792 nnsum3primesgbe 47796 gpg5edgnedg 48134 |
| Copyright terms: Public domain | W3C validator |