Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq2 4667 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: opidg 4820 funopg 6452 df2o2 8283 fz12pr 13242 fz0to3un2pr 13287 fz0to4untppr 13288 fzo13pr 13399 fzo0to2pr 13400 fzo0to42pr 13402 bpoly3 15696 prmreclem2 16546 2strstr1OLD 16864 mgmnsgrpex 18485 sgrpnmndex 18486 m2detleiblem2 21685 txindis 22693 setsvtx 27308 uhgrwkspthlem2 28023 31prm 44937 nnsum3primes4 45128 nnsum3primesgbe 45132 |
Copyright terms: Public domain | W3C validator |