| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq2 4688 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: opidg 4845 funopg 6523 df2o2 8403 fz12pr 13488 fz0to3un2pr 13536 fz0to4untppr 13537 fzo13pr 13656 fzo0to2pr 13657 fz01pr 13658 fzo0to42pr 13660 bpoly3 15972 prmreclem2 16836 mgmnsgrpex 18847 sgrpnmndex 18848 m2detleiblem2 22563 txindis 23569 setsvtx 29034 uhgrwkspthlem2 29753 31prm 47759 nnsum3primes4 47950 nnsum3primesgbe 47954 gpg5edgnedg 48292 |
| Copyright terms: Public domain | W3C validator |