Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq2 4631 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-un 3866 df-sn 4527 df-pr 4529 |
This theorem is referenced by: opidg 4786 funopg 6375 df2o2 8135 fz12pr 13027 fz0to3un2pr 13072 fz0to4untppr 13073 fzo13pr 13184 fzo0to2pr 13185 fzo0to42pr 13187 bpoly3 15474 prmreclem2 16323 2strstr1 16678 mgmnsgrpex 18177 sgrpnmndex 18178 m2detleiblem2 21343 txindis 22349 setsvtx 26942 uhgrwkspthlem2 27657 31prm 44542 nnsum3primes4 44733 nnsum3primesgbe 44737 |
Copyright terms: Public domain | W3C validator |