| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq2 4682 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cpr 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4572 df-pr 4574 |
| This theorem is referenced by: opidg 4839 funopg 6510 df2o2 8389 fz12pr 13476 fz0to3un2pr 13524 fz0to4untppr 13525 fzo13pr 13644 fzo0to2pr 13645 fz01pr 13646 fzo0to42pr 13648 bpoly3 15960 prmreclem2 16824 mgmnsgrpex 18834 sgrpnmndex 18835 m2detleiblem2 22538 txindis 23544 setsvtx 29008 uhgrwkspthlem2 29727 31prm 47628 nnsum3primes4 47819 nnsum3primesgbe 47823 gpg5edgnedg 48161 |
| Copyright terms: Public domain | W3C validator |