MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n4cyclfrgr Structured version   Visualization version   GIF version

Theorem n4cyclfrgr 30239
Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
n4cyclfrgr ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)

Proof of Theorem n4cyclfrgr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 30209 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 usgrupgr 29131 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ UPGraph)
4 eqid 2734 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2734 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
64, 5upgr4cycl4dv4e 30133 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))))
74, 5isfrgr 30208 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ (Vtx‘𝐺))
9 necom 2984 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑐𝑐𝑎)
109biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑐𝑐𝑎)
11103ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑏𝑎𝑐𝑎𝑑) → 𝑐𝑎)
1211ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑐𝑎)
1312adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐𝑎)
14 eldifsn 4766 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) ↔ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑐𝑎))
158, 13, 14sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}))
16 sneq 4616 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → {𝑘} = {𝑎})
1716difeq2d 4106 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → ((Vtx‘𝐺) ∖ {𝑘}) = ((Vtx‘𝐺) ∖ {𝑎}))
18 preq2 4714 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑎 → {𝑥, 𝑘} = {𝑥, 𝑎})
1918preq1d 4719 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑎 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑙}})
2019sseq1d 3995 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2120reubidv 3381 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2217, 21raleqbidv 3329 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322rspcv 3601 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2423ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
25 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑐 → {𝑥, 𝑙} = {𝑥, 𝑐})
2625preq2d 4720 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑐 → {{𝑥, 𝑎}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑐}})
2726sseq1d 3995 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑐 → ({{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2827reubidv 3381 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑐 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2928rspcv 3601 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
3015, 24, 29sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
31 prcom 4712 . . . . . . . . . . . . . . . . . . 19 {𝑥, 𝑎} = {𝑎, 𝑥}
3231preq1i 4716 . . . . . . . . . . . . . . . . . 18 {{𝑥, 𝑎}, {𝑥, 𝑐}} = {{𝑎, 𝑥}, {𝑥, 𝑐}}
3332sseq1i 3992 . . . . . . . . . . . . . . . . 17 ({{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ {{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
3433reubii 3372 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
35 simprll 778 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 simprlr 779 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)))
37 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏 ∈ (Vtx‘𝐺))
38 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑑 ∈ (Vtx‘𝐺))
39 simprr2 1222 . . . . . . . . . . . . . . . . . . . 20 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑏𝑑)
4039adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏𝑑)
41 4cycl2vnunb 30238 . . . . . . . . . . . . . . . . . . 19 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)) ∧ (𝑏 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺) ∧ 𝑏𝑑)) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4235, 36, 37, 38, 40, 41syl113anc 1383 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4342pm2.21d 121 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → (♯‘𝐹) ≠ 4))
4443com12 32 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4534, 44sylbi 217 . . . . . . . . . . . . . . 15 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4630, 45syl6 35 . . . . . . . . . . . . . 14 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4)))
4746pm2.43b 55 . . . . . . . . . . . . 13 (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4847adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
497, 48sylbi 217 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
5049expdcom 414 . . . . . . . . . 10 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) → (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5150rexlimdvva 3200 . . . . . . . . 9 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5251rexlimivv 3188 . . . . . . . 8 (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
536, 52syl 17 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
54533exp 1119 . . . . . 6 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))))
5554com34 91 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ FriendGraph → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
5655com23 86 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
573, 56mpcom 38 . . 3 (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)))
5857imp 406 . 2 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))
59 neqne 2939 . 2 (¬ (♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)
6058, 59pm2.61d1 180 1 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  ∃!wreu 3361  cdif 3928  wss 3931  {csn 4606  {cpr 4608   class class class wbr 5123  cfv 6541  4c4 12305  chash 14352  Vtxcvtx 28942  Edgcedg 28993  UPGraphcupgr 29026  USGraphcusgr 29095  Cyclesccycls 29734   FriendGraph cfrgr 30206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14353  df-word 14536  df-edg 28994  df-uhgr 29004  df-upgr 29028  df-uspgr 29096  df-usgr 29097  df-wlks 29546  df-trls 29639  df-pths 29663  df-cycls 29736  df-frgr 30207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator