MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n4cyclfrgr Structured version   Visualization version   GIF version

Theorem n4cyclfrgr 28062
Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
n4cyclfrgr ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)

Proof of Theorem n4cyclfrgr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 28032 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 usgrupgr 26959 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ UPGraph)
4 eqid 2819 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2819 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
64, 5upgr4cycl4dv4e 27956 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))))
74, 5isfrgr 28031 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8 simplrl 775 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ (Vtx‘𝐺))
9 necom 3067 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑐𝑐𝑎)
109biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑐𝑐𝑎)
11103ad2ant2 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑏𝑎𝑐𝑎𝑑) → 𝑐𝑎)
1211ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑐𝑎)
1312adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐𝑎)
14 eldifsn 4711 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) ↔ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑐𝑎))
158, 13, 14sylanbrc 585 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}))
16 sneq 4569 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → {𝑘} = {𝑎})
1716difeq2d 4097 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → ((Vtx‘𝐺) ∖ {𝑘}) = ((Vtx‘𝐺) ∖ {𝑎}))
18 preq2 4662 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑎 → {𝑥, 𝑘} = {𝑥, 𝑎})
1918preq1d 4667 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑎 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑙}})
2019sseq1d 3996 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2120reubidv 3388 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2217, 21raleqbidv 3400 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322rspcv 3616 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2423ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
25 preq2 4662 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑐 → {𝑥, 𝑙} = {𝑥, 𝑐})
2625preq2d 4668 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑐 → {{𝑥, 𝑎}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑐}})
2726sseq1d 3996 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑐 → ({{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2827reubidv 3388 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑐 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2928rspcv 3616 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
3015, 24, 29sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
31 prcom 4660 . . . . . . . . . . . . . . . . . . 19 {𝑥, 𝑎} = {𝑎, 𝑥}
3231preq1i 4664 . . . . . . . . . . . . . . . . . 18 {{𝑥, 𝑎}, {𝑥, 𝑐}} = {{𝑎, 𝑥}, {𝑥, 𝑐}}
3332sseq1i 3993 . . . . . . . . . . . . . . . . 17 ({{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ {{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
3433reubii 3390 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
35 simprll 777 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 simprlr 778 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)))
37 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏 ∈ (Vtx‘𝐺))
38 simplrr 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑑 ∈ (Vtx‘𝐺))
39 simprr2 1217 . . . . . . . . . . . . . . . . . . . 20 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑏𝑑)
4039adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏𝑑)
41 4cycl2vnunb 28061 . . . . . . . . . . . . . . . . . . 19 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)) ∧ (𝑏 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺) ∧ 𝑏𝑑)) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4235, 36, 37, 38, 40, 41syl113anc 1377 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4342pm2.21d 121 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → (♯‘𝐹) ≠ 4))
4443com12 32 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4534, 44sylbi 219 . . . . . . . . . . . . . . 15 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4630, 45syl6 35 . . . . . . . . . . . . . 14 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4)))
4746pm2.43b 55 . . . . . . . . . . . . 13 (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4847adantl 484 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
497, 48sylbi 219 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
5049expdcom 417 . . . . . . . . . 10 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) → (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5150rexlimdvva 3292 . . . . . . . . 9 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5251rexlimivv 3290 . . . . . . . 8 (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
536, 52syl 17 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
54533exp 1114 . . . . . 6 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))))
5554com34 91 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ FriendGraph → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
5655com23 86 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
573, 56mpcom 38 . . 3 (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)))
5857imp 409 . 2 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))
59 neqne 3022 . 2 (¬ (♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)
6058, 59pm2.61d1 182 1 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  ∃!wreu 3138  cdif 3931  wss 3934  {csn 4559  {cpr 4561   class class class wbr 5057  cfv 6348  4c4 11686  chash 13682  Vtxcvtx 26773  Edgcedg 26824  UPGraphcupgr 26857  USGraphcusgr 26926  Cyclesccycls 27558   FriendGraph cfrgr 28029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-edg 26825  df-uhgr 26835  df-upgr 26859  df-uspgr 26927  df-usgr 26928  df-wlks 27373  df-trls 27466  df-pths 27489  df-cycls 27560  df-frgr 28030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator