Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Structured version   Visualization version   GIF version

Theorem fundmpss 32526
Description: If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))

Proof of Theorem fundmpss
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 3963 . . . . 5 (𝐹𝐺𝐹𝐺)
2 dmss 5621 . . . . 5 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
31, 2syl 17 . . . 4 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
43a1i 11 . . 3 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺))
5 pssdif 4213 . . . . . . . 8 (𝐹𝐺 → (𝐺𝐹) ≠ ∅)
6 n0 4197 . . . . . . . 8 ((𝐺𝐹) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐺𝐹))
75, 6sylib 210 . . . . . . 7 (𝐹𝐺 → ∃𝑝 𝑝 ∈ (𝐺𝐹))
87adantl 474 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∃𝑝 𝑝 ∈ (𝐺𝐹))
9 funrel 6205 . . . . . . . . . . 11 (Fun 𝐺 → Rel 𝐺)
10 reldif 5538 . . . . . . . . . . 11 (Rel 𝐺 → Rel (𝐺𝐹))
119, 10syl 17 . . . . . . . . . 10 (Fun 𝐺 → Rel (𝐺𝐹))
12 elrel 5521 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
13 eleq1 2854 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹)))
14 df-br 4930 . . . . . . . . . . . . . . . 16 (𝑥(𝐺𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹))
1513, 14syl6bbr 281 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ 𝑥(𝐺𝐹)𝑦))
1615biimpcd 241 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐺𝐹) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
1716adantl 474 . . . . . . . . . . . . 13 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
18172eximdv 1878 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
1912, 18mpd 15 . . . . . . . . . . 11 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦)
2019ex 405 . . . . . . . . . 10 (Rel (𝐺𝐹) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2111, 20syl 17 . . . . . . . . 9 (Fun 𝐺 → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2221adantr 473 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
23 difss 3999 . . . . . . . . . . . . 13 (𝐺𝐹) ⊆ 𝐺
2423ssbri 4974 . . . . . . . . . . . 12 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
2524eximi 1797 . . . . . . . . . . 11 (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦)
2625a1i 11 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦))
27 brdif 4982 . . . . . . . . . . . . . . 15 (𝑥(𝐺𝐹)𝑦 ↔ (𝑥𝐺𝑦 ∧ ¬ 𝑥𝐹𝑦))
2827simprbi 489 . . . . . . . . . . . . . 14 (𝑥(𝐺𝐹)𝑦 → ¬ 𝑥𝐹𝑦)
2928adantl 474 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ 𝑥𝐹𝑦)
301ssbrd 4972 . . . . . . . . . . . . . . . 16 (𝐹𝐺 → (𝑥𝐹𝑧𝑥𝐺𝑧))
3130ad2antlr 714 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐺𝑧))
32 dffun2 6198 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧)))
3332simprbi 489 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
34 2sp 2114 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3534sps 2113 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3633, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
37 breq2 4933 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
3837biimprd 240 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))
3936, 38syl6 35 . . . . . . . . . . . . . . . . . . 19 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4039expd 408 . . . . . . . . . . . . . . . . . 18 (Fun 𝐺 → (𝑥𝐺𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4127simplbi 490 . . . . . . . . . . . . . . . . . 18 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
4240, 41impel 498 . . . . . . . . . . . . . . . . 17 ((Fun 𝐺𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4342adantlr 702 . . . . . . . . . . . . . . . 16 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4443com23 86 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧 → (𝑥𝐺𝑧𝑥𝐹𝑦)))
4531, 44mpdd 43 . . . . . . . . . . . . . 14 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐹𝑦))
4645exlimdv 1892 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (∃𝑧 𝑥𝐹𝑧𝑥𝐹𝑦))
4729, 46mtod 190 . . . . . . . . . . . 12 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ ∃𝑧 𝑥𝐹𝑧)
4847ex 405 . . . . . . . . . . 11 ((Fun 𝐺𝐹𝐺) → (𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
4948exlimdv 1892 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5026, 49jcad 505 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5150eximdv 1876 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (∃𝑥𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5222, 51syld 47 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5352exlimdv 1892 . . . . . 6 ((Fun 𝐺𝐹𝐺) → (∃𝑝 𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
548, 53mpd 15 . . . . 5 ((Fun 𝐺𝐹𝐺) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
55 nss 3920 . . . . . 6 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹))
56 vex 3419 . . . . . . . . 9 𝑥 ∈ V
5756eldm 5619 . . . . . . . 8 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦 𝑥𝐺𝑦)
5856eldm 5619 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧)
5958notbii 312 . . . . . . . 8 𝑥 ∈ dom 𝐹 ↔ ¬ ∃𝑧 𝑥𝐹𝑧)
6057, 59anbi12i 617 . . . . . . 7 ((𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6160exbii 1810 . . . . . 6 (∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6255, 61bitri 267 . . . . 5 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6354, 62sylibr 226 . . . 4 ((Fun 𝐺𝐹𝐺) → ¬ dom 𝐺 ⊆ dom 𝐹)
6463ex 405 . . 3 (Fun 𝐺 → (𝐹𝐺 → ¬ dom 𝐺 ⊆ dom 𝐹))
654, 64jcad 505 . 2 (Fun 𝐺 → (𝐹𝐺 → (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹)))
66 dfpss3 3954 . 2 (dom 𝐹 ⊊ dom 𝐺 ↔ (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹))
6765, 66syl6ibr 244 1 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wal 1505   = wceq 1507  wex 1742  wcel 2050  wne 2968  cdif 3827  wss 3830  wpss 3831  c0 4179  cop 4447   class class class wbr 4929  dom cdm 5407  Rel wrel 5412  Fun wfun 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-fun 6190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator