Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Structured version   Visualization version   GIF version

Theorem fundmpss 33646
Description: If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))

Proof of Theorem fundmpss
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 4026 . . . . 5 (𝐹𝐺𝐹𝐺)
2 dmss 5800 . . . . 5 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
31, 2syl 17 . . . 4 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
43a1i 11 . . 3 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺))
5 pssdif 4297 . . . . . . . 8 (𝐹𝐺 → (𝐺𝐹) ≠ ∅)
6 n0 4277 . . . . . . . 8 ((𝐺𝐹) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐺𝐹))
75, 6sylib 217 . . . . . . 7 (𝐹𝐺 → ∃𝑝 𝑝 ∈ (𝐺𝐹))
87adantl 481 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∃𝑝 𝑝 ∈ (𝐺𝐹))
9 funrel 6435 . . . . . . . . . . 11 (Fun 𝐺 → Rel 𝐺)
10 reldif 5714 . . . . . . . . . . 11 (Rel 𝐺 → Rel (𝐺𝐹))
119, 10syl 17 . . . . . . . . . 10 (Fun 𝐺 → Rel (𝐺𝐹))
12 elrel 5697 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
13 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹)))
14 df-br 5071 . . . . . . . . . . . . . . . 16 (𝑥(𝐺𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹))
1513, 14bitr4di 288 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ 𝑥(𝐺𝐹)𝑦))
1615biimpcd 248 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐺𝐹) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
1716adantl 481 . . . . . . . . . . . . 13 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
18172eximdv 1923 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
1912, 18mpd 15 . . . . . . . . . . 11 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦)
2019ex 412 . . . . . . . . . 10 (Rel (𝐺𝐹) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2111, 20syl 17 . . . . . . . . 9 (Fun 𝐺 → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2221adantr 480 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
23 difss 4062 . . . . . . . . . . . . 13 (𝐺𝐹) ⊆ 𝐺
2423ssbri 5115 . . . . . . . . . . . 12 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
2524eximi 1838 . . . . . . . . . . 11 (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦)
2625a1i 11 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦))
27 brdif 5123 . . . . . . . . . . . . . . 15 (𝑥(𝐺𝐹)𝑦 ↔ (𝑥𝐺𝑦 ∧ ¬ 𝑥𝐹𝑦))
2827simprbi 496 . . . . . . . . . . . . . 14 (𝑥(𝐺𝐹)𝑦 → ¬ 𝑥𝐹𝑦)
2928adantl 481 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ 𝑥𝐹𝑦)
301ssbrd 5113 . . . . . . . . . . . . . . . 16 (𝐹𝐺 → (𝑥𝐹𝑧𝑥𝐺𝑧))
3130ad2antlr 723 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐺𝑧))
32 dffun2 6428 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧)))
3332simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
34 2sp 2181 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3534sps 2180 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3633, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
37 breq2 5074 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
3837biimprd 247 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))
3936, 38syl6 35 . . . . . . . . . . . . . . . . . . 19 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4039expd 415 . . . . . . . . . . . . . . . . . 18 (Fun 𝐺 → (𝑥𝐺𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4127simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
4240, 41impel 505 . . . . . . . . . . . . . . . . 17 ((Fun 𝐺𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4342adantlr 711 . . . . . . . . . . . . . . . 16 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4443com23 86 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧 → (𝑥𝐺𝑧𝑥𝐹𝑦)))
4531, 44mpdd 43 . . . . . . . . . . . . . 14 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐹𝑦))
4645exlimdv 1937 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (∃𝑧 𝑥𝐹𝑧𝑥𝐹𝑦))
4729, 46mtod 197 . . . . . . . . . . . 12 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ ∃𝑧 𝑥𝐹𝑧)
4847ex 412 . . . . . . . . . . 11 ((Fun 𝐺𝐹𝐺) → (𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
4948exlimdv 1937 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5026, 49jcad 512 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5150eximdv 1921 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (∃𝑥𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5222, 51syld 47 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5352exlimdv 1937 . . . . . 6 ((Fun 𝐺𝐹𝐺) → (∃𝑝 𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
548, 53mpd 15 . . . . 5 ((Fun 𝐺𝐹𝐺) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
55 nss 3979 . . . . . 6 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹))
56 vex 3426 . . . . . . . . 9 𝑥 ∈ V
5756eldm 5798 . . . . . . . 8 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦 𝑥𝐺𝑦)
5856eldm 5798 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧)
5958notbii 319 . . . . . . . 8 𝑥 ∈ dom 𝐹 ↔ ¬ ∃𝑧 𝑥𝐹𝑧)
6057, 59anbi12i 626 . . . . . . 7 ((𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6160exbii 1851 . . . . . 6 (∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6255, 61bitri 274 . . . . 5 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6354, 62sylibr 233 . . . 4 ((Fun 𝐺𝐹𝐺) → ¬ dom 𝐺 ⊆ dom 𝐹)
6463ex 412 . . 3 (Fun 𝐺 → (𝐹𝐺 → ¬ dom 𝐺 ⊆ dom 𝐹))
654, 64jcad 512 . 2 (Fun 𝐺 → (𝐹𝐺 → (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹)))
66 dfpss3 4017 . 2 (dom 𝐹 ⊊ dom 𝐺 ↔ (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹))
6765, 66syl6ibr 251 1 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  cdif 3880  wss 3883  wpss 3884  c0 4253  cop 4564   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator