Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Structured version   Visualization version   GIF version

Theorem fundmpss 35271
Description: If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))

Proof of Theorem fundmpss
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 4090 . . . . 5 (𝐹𝐺𝐹𝐺)
2 dmss 5896 . . . . 5 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
31, 2syl 17 . . . 4 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
43a1i 11 . . 3 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺))
5 pssdif 4361 . . . . . . . 8 (𝐹𝐺 → (𝐺𝐹) ≠ ∅)
6 n0 4341 . . . . . . . 8 ((𝐺𝐹) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐺𝐹))
75, 6sylib 217 . . . . . . 7 (𝐹𝐺 → ∃𝑝 𝑝 ∈ (𝐺𝐹))
87adantl 481 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∃𝑝 𝑝 ∈ (𝐺𝐹))
9 funrel 6559 . . . . . . . . . . 11 (Fun 𝐺 → Rel 𝐺)
10 reldif 5808 . . . . . . . . . . 11 (Rel 𝐺 → Rel (𝐺𝐹))
119, 10syl 17 . . . . . . . . . 10 (Fun 𝐺 → Rel (𝐺𝐹))
12 elrel 5791 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
13 eleq1 2815 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹)))
14 df-br 5142 . . . . . . . . . . . . . . . 16 (𝑥(𝐺𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹))
1513, 14bitr4di 289 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ 𝑥(𝐺𝐹)𝑦))
1615biimpcd 248 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐺𝐹) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
1716adantl 481 . . . . . . . . . . . . 13 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
18172eximdv 1914 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
1912, 18mpd 15 . . . . . . . . . . 11 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦)
2019ex 412 . . . . . . . . . 10 (Rel (𝐺𝐹) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2111, 20syl 17 . . . . . . . . 9 (Fun 𝐺 → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2221adantr 480 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
23 difss 4126 . . . . . . . . . . . . 13 (𝐺𝐹) ⊆ 𝐺
2423ssbri 5186 . . . . . . . . . . . 12 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
2524eximi 1829 . . . . . . . . . . 11 (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦)
2625a1i 11 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦))
27 brdif 5194 . . . . . . . . . . . . . . 15 (𝑥(𝐺𝐹)𝑦 ↔ (𝑥𝐺𝑦 ∧ ¬ 𝑥𝐹𝑦))
2827simprbi 496 . . . . . . . . . . . . . 14 (𝑥(𝐺𝐹)𝑦 → ¬ 𝑥𝐹𝑦)
2928adantl 481 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ 𝑥𝐹𝑦)
301ssbrd 5184 . . . . . . . . . . . . . . . 16 (𝐹𝐺 → (𝑥𝐹𝑧𝑥𝐺𝑧))
3130ad2antlr 724 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐺𝑧))
32 dffun2 6547 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧)))
3332simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
34 2sp 2171 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3534sps 2170 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3633, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
37 breq2 5145 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
3837biimprd 247 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))
3936, 38syl6 35 . . . . . . . . . . . . . . . . . . 19 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4039expd 415 . . . . . . . . . . . . . . . . . 18 (Fun 𝐺 → (𝑥𝐺𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4127simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
4240, 41impel 505 . . . . . . . . . . . . . . . . 17 ((Fun 𝐺𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4342adantlr 712 . . . . . . . . . . . . . . . 16 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4443com23 86 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧 → (𝑥𝐺𝑧𝑥𝐹𝑦)))
4531, 44mpdd 43 . . . . . . . . . . . . . 14 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐹𝑦))
4645exlimdv 1928 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (∃𝑧 𝑥𝐹𝑧𝑥𝐹𝑦))
4729, 46mtod 197 . . . . . . . . . . . 12 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ ∃𝑧 𝑥𝐹𝑧)
4847ex 412 . . . . . . . . . . 11 ((Fun 𝐺𝐹𝐺) → (𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
4948exlimdv 1928 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5026, 49jcad 512 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5150eximdv 1912 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (∃𝑥𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5222, 51syld 47 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5352exlimdv 1928 . . . . . 6 ((Fun 𝐺𝐹𝐺) → (∃𝑝 𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
548, 53mpd 15 . . . . 5 ((Fun 𝐺𝐹𝐺) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
55 nss 4041 . . . . . 6 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹))
56 vex 3472 . . . . . . . . 9 𝑥 ∈ V
5756eldm 5894 . . . . . . . 8 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦 𝑥𝐺𝑦)
5856eldm 5894 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧)
5958notbii 320 . . . . . . . 8 𝑥 ∈ dom 𝐹 ↔ ¬ ∃𝑧 𝑥𝐹𝑧)
6057, 59anbi12i 626 . . . . . . 7 ((𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6160exbii 1842 . . . . . 6 (∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6255, 61bitri 275 . . . . 5 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6354, 62sylibr 233 . . . 4 ((Fun 𝐺𝐹𝐺) → ¬ dom 𝐺 ⊆ dom 𝐹)
6463ex 412 . . 3 (Fun 𝐺 → (𝐹𝐺 → ¬ dom 𝐺 ⊆ dom 𝐹))
654, 64jcad 512 . 2 (Fun 𝐺 → (𝐹𝐺 → (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹)))
66 dfpss3 4081 . 2 (dom 𝐹 ⊊ dom 𝐺 ↔ (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹))
6765, 66imbitrrdi 251 1 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  wne 2934  cdif 3940  wss 3943  wpss 3944  c0 4317  cop 4629   class class class wbr 5141  dom cdm 5669  Rel wrel 5674  Fun wfun 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-fun 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator