Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Structured version   Visualization version   GIF version

Theorem fundmpss 35042
Description: If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))

Proof of Theorem fundmpss
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 4094 . . . . 5 (𝐹𝐺𝐹𝐺)
2 dmss 5901 . . . . 5 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
31, 2syl 17 . . . 4 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
43a1i 11 . . 3 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺))
5 pssdif 4365 . . . . . . . 8 (𝐹𝐺 → (𝐺𝐹) ≠ ∅)
6 n0 4345 . . . . . . . 8 ((𝐺𝐹) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐺𝐹))
75, 6sylib 217 . . . . . . 7 (𝐹𝐺 → ∃𝑝 𝑝 ∈ (𝐺𝐹))
87adantl 480 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∃𝑝 𝑝 ∈ (𝐺𝐹))
9 funrel 6564 . . . . . . . . . . 11 (Fun 𝐺 → Rel 𝐺)
10 reldif 5814 . . . . . . . . . . 11 (Rel 𝐺 → Rel (𝐺𝐹))
119, 10syl 17 . . . . . . . . . 10 (Fun 𝐺 → Rel (𝐺𝐹))
12 elrel 5797 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
13 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹)))
14 df-br 5148 . . . . . . . . . . . . . . . 16 (𝑥(𝐺𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹))
1513, 14bitr4di 288 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ 𝑥(𝐺𝐹)𝑦))
1615biimpcd 248 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐺𝐹) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
1716adantl 480 . . . . . . . . . . . . 13 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
18172eximdv 1920 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
1912, 18mpd 15 . . . . . . . . . . 11 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦)
2019ex 411 . . . . . . . . . 10 (Rel (𝐺𝐹) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2111, 20syl 17 . . . . . . . . 9 (Fun 𝐺 → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2221adantr 479 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
23 difss 4130 . . . . . . . . . . . . 13 (𝐺𝐹) ⊆ 𝐺
2423ssbri 5192 . . . . . . . . . . . 12 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
2524eximi 1835 . . . . . . . . . . 11 (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦)
2625a1i 11 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦))
27 brdif 5200 . . . . . . . . . . . . . . 15 (𝑥(𝐺𝐹)𝑦 ↔ (𝑥𝐺𝑦 ∧ ¬ 𝑥𝐹𝑦))
2827simprbi 495 . . . . . . . . . . . . . 14 (𝑥(𝐺𝐹)𝑦 → ¬ 𝑥𝐹𝑦)
2928adantl 480 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ 𝑥𝐹𝑦)
301ssbrd 5190 . . . . . . . . . . . . . . . 16 (𝐹𝐺 → (𝑥𝐹𝑧𝑥𝐺𝑧))
3130ad2antlr 723 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐺𝑧))
32 dffun2 6552 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧)))
3332simprbi 495 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
34 2sp 2177 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3534sps 2176 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3633, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
37 breq2 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
3837biimprd 247 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))
3936, 38syl6 35 . . . . . . . . . . . . . . . . . . 19 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4039expd 414 . . . . . . . . . . . . . . . . . 18 (Fun 𝐺 → (𝑥𝐺𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4127simplbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
4240, 41impel 504 . . . . . . . . . . . . . . . . 17 ((Fun 𝐺𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4342adantlr 711 . . . . . . . . . . . . . . . 16 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4443com23 86 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧 → (𝑥𝐺𝑧𝑥𝐹𝑦)))
4531, 44mpdd 43 . . . . . . . . . . . . . 14 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐹𝑦))
4645exlimdv 1934 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (∃𝑧 𝑥𝐹𝑧𝑥𝐹𝑦))
4729, 46mtod 197 . . . . . . . . . . . 12 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ ∃𝑧 𝑥𝐹𝑧)
4847ex 411 . . . . . . . . . . 11 ((Fun 𝐺𝐹𝐺) → (𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
4948exlimdv 1934 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5026, 49jcad 511 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5150eximdv 1918 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (∃𝑥𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5222, 51syld 47 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5352exlimdv 1934 . . . . . 6 ((Fun 𝐺𝐹𝐺) → (∃𝑝 𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
548, 53mpd 15 . . . . 5 ((Fun 𝐺𝐹𝐺) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
55 nss 4045 . . . . . 6 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹))
56 vex 3476 . . . . . . . . 9 𝑥 ∈ V
5756eldm 5899 . . . . . . . 8 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦 𝑥𝐺𝑦)
5856eldm 5899 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧)
5958notbii 319 . . . . . . . 8 𝑥 ∈ dom 𝐹 ↔ ¬ ∃𝑧 𝑥𝐹𝑧)
6057, 59anbi12i 625 . . . . . . 7 ((𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6160exbii 1848 . . . . . 6 (∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6255, 61bitri 274 . . . . 5 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6354, 62sylibr 233 . . . 4 ((Fun 𝐺𝐹𝐺) → ¬ dom 𝐺 ⊆ dom 𝐹)
6463ex 411 . . 3 (Fun 𝐺 → (𝐹𝐺 → ¬ dom 𝐺 ⊆ dom 𝐹))
654, 64jcad 511 . 2 (Fun 𝐺 → (𝐹𝐺 → (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹)))
66 dfpss3 4085 . 2 (dom 𝐹 ⊊ dom 𝐺 ↔ (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹))
6765, 66imbitrrdi 251 1 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wal 1537   = wceq 1539  wex 1779  wcel 2104  wne 2938  cdif 3944  wss 3947  wpss 3948  c0 4321  cop 4633   class class class wbr 5147  dom cdm 5675  Rel wrel 5680  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-fun 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator