MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 19978
Description: Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.3 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡,𝑠, 0   𝐴,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝐵,𝑠,𝑡   𝐺,𝑠,𝑡   𝑈,𝑠,𝑡   𝑆,𝑠,𝑡   𝜑,𝑠,𝑡   𝐾,𝑠,𝑡
Allowed substitution hints:   𝐸(𝑡,𝑠)   𝑂(𝑡,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑢 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
2 pwfi 9226 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ 𝒫 𝐵 ∈ Fin)
31, 2sylib 218 . . . . . . . . 9 (𝜑 → 𝒫 𝐵 ∈ Fin)
43adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝒫 𝐵 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
65subgss 19024 . . . . . . . . . . 11 (𝑣 ∈ (SubGrp‘𝐺) → 𝑣𝐵)
763ad2ant2 1134 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣𝐵)
8 velpw 4558 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐵𝑣𝐵)
97, 8sylibr 234 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣 ∈ 𝒫 𝐵)
109rabssdv 4028 . . . . . . . 8 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵)
114, 10ssfid 9170 . . . . . . 7 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
12 finnum 9863 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
1311, 12syl 17 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
14 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
15 pgpfac1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
16 ablgrp 19682 . . . . . . . . . . . . 13 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Grp)
185subgacs 19058 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
19 acsmre 17576 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2017, 18, 193syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
21 pgpfac1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubGrp‘𝐺))
225subgss 19024 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝑈𝐵)
24 pgpfac1.au . . . . . . . . . . . 12 (𝜑𝐴𝑈)
2523, 24sseldd 3938 . . . . . . . . . . 11 (𝜑𝐴𝐵)
26 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
2726mrcsncl 17536 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2820, 25, 27syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2914, 28eqeltrid 2832 . . . . . . . . 9 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3029adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
31 simpr 484 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆𝑈)
3224snssd 4763 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ⊆ 𝑈)
3332, 23sstrd 3948 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
3420, 26, 33mrcssidd 17549 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
3534, 14sseqtrrdi 3979 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
36 snssg 4737 . . . . . . . . . . 11 (𝐴𝐵 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3725, 36syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3835, 37mpbird 257 . . . . . . . . 9 (𝜑𝐴𝑆)
3938adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝐴𝑆)
40 psseq1 4043 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝑣𝑈𝑆𝑈))
41 eleq2 2817 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝐴𝑣𝐴𝑆))
4240, 41anbi12d 632 . . . . . . . . 9 (𝑣 = 𝑆 → ((𝑣𝑈𝐴𝑣) ↔ (𝑆𝑈𝐴𝑆)))
4342rspcev 3579 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑈𝐴𝑆)) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4430, 31, 39, 43syl12anc 836 . . . . . . 7 ((𝜑𝑆𝑈) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
45 rabn0 4342 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4644, 45sylibr 234 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅)
47 simpr1 1195 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
48 simpr2 1196 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ≠ ∅)
4911adantr 480 . . . . . . . . . . 11 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
5049, 47ssfid 9170 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ Fin)
51 simpr3 1197 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → [] Or 𝑢)
52 fin1a2lem10 10322 . . . . . . . . . 10 ((𝑢 ≠ ∅ ∧ 𝑢 ∈ Fin ∧ [] Or 𝑢) → 𝑢𝑢)
5348, 50, 51, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢𝑢)
5447, 53sseldd 3938 . . . . . . . 8 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
5554ex 412 . . . . . . 7 ((𝜑𝑆𝑈) → ((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
5655alrimiv 1927 . . . . . 6 ((𝜑𝑆𝑈) → ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
57 zornn0g 10418 . . . . . 6 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ∧ ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
5813, 46, 56, 57syl3anc 1373 . . . . 5 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
59 psseq1 4043 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑈𝑤𝑈))
60 eleq2 2817 . . . . . . . 8 (𝑣 = 𝑤 → (𝐴𝑣𝐴𝑤))
6159, 60anbi12d 632 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑈𝐴𝑣) ↔ (𝑤𝑈𝐴𝑤)))
6261ralrab 3656 . . . . . 6 (∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6362rexbii 3076 . . . . 5 (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6458, 63sylib 218 . . . 4 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6564ex 412 . . 3 (𝜑 → (𝑆𝑈 → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
66 pgpfac1.3 . . . . 5 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
67 psseq1 4043 . . . . . . 7 (𝑣 = 𝑠 → (𝑣𝑈𝑠𝑈))
68 eleq2 2817 . . . . . . 7 (𝑣 = 𝑠 → (𝐴𝑣𝐴𝑠))
6967, 68anbi12d 632 . . . . . 6 (𝑣 = 𝑠 → ((𝑣𝑈𝐴𝑣) ↔ (𝑠𝑈𝐴𝑠)))
7069ralrab 3656 . . . . 5 (∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
7166, 70sylibr 234 . . . 4 (𝜑 → ∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))
72 r19.29 3092 . . . . 5 ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
7369elrab 3650 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠)))
74 ineq2 4167 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆𝑡) = (𝑆𝑣))
7574eqeq1d 2731 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆𝑡) = { 0 } ↔ (𝑆𝑣) = { 0 }))
76 oveq2 7361 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆 𝑡) = (𝑆 𝑣))
7776eqeq1d 2731 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑣) = 𝑠))
7875, 77anbi12d 632 . . . . . . . . . 10 (𝑡 = 𝑣 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠)))
7978cbvrexvw 3208 . . . . . . . . 9 (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠))
80 simprrl 780 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → 𝑠𝑈)
8180ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → 𝑠𝑈)
82 simpr2 1196 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) = 𝑠)
8382psseq1d 4048 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ((𝑆 𝑣) ⊊ 𝑈𝑠𝑈))
8481, 83mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) ⊊ 𝑈)
85 pssdif 4322 . . . . . . . . . . . . . . 15 ((𝑆 𝑣) ⊊ 𝑈 → (𝑈 ∖ (𝑆 𝑣)) ≠ ∅)
86 n0 4306 . . . . . . . . . . . . . . 15 ((𝑈 ∖ (𝑆 𝑣)) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8785, 86sylib 218 . . . . . . . . . . . . . 14 ((𝑆 𝑣) ⊊ 𝑈 → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8884, 87syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
89 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
90 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gEx‘𝐺)
91 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0g𝐺)
92 pgpfac1.l . . . . . . . . . . . . . . . 16 = (LSSum‘𝐺)
93 pgpfac1.p . . . . . . . . . . . . . . . . 17 (𝜑𝑃 pGrp 𝐺)
9493ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑃 pGrp 𝐺)
9515ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐺 ∈ Abel)
961ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐵 ∈ Fin)
97 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂𝐴) = 𝐸)
9897ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑂𝐴) = 𝐸)
9921ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑈 ∈ (SubGrp‘𝐺))
10024ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐴𝑈)
101 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑣 ∈ (SubGrp‘𝐺))
102 simprl1 1219 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆𝑣) = { 0 })
10384adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊊ 𝑈)
104103pssssd 4053 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊆ 𝑈)
105 simprl3 1221 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
10682adantrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) = 𝑠)
107 psseq1 4043 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 𝑣) = 𝑠 → ((𝑆 𝑣) ⊊ 𝑦𝑠𝑦))
108107notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 𝑣) = 𝑠 → (¬ (𝑆 𝑣) ⊊ 𝑦 ↔ ¬ 𝑠𝑦))
109108imbi2d 340 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 𝑣) = 𝑠 → (((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
110109ralbidv 3152 . . . . . . . . . . . . . . . . . . 19 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
111 psseq1 4043 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑦𝑈𝑤𝑈))
112 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
113111, 112anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑦𝑈𝐴𝑦) ↔ (𝑤𝑈𝐴𝑤)))
114 psseq2 4044 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑠𝑦𝑠𝑤))
115114notbid 318 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (¬ 𝑠𝑦 ↔ ¬ 𝑠𝑤))
116113, 115imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
117116cbvralvw 3207 . . . . . . . . . . . . . . . . . . 19 (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
118110, 117bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
119106, 118syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
120105, 119mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦))
121 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
122 eqid 2729 . . . . . . . . . . . . . . . 16 (.g𝐺) = (.g𝐺)
12326, 14, 5, 89, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 104, 120, 121, 122pgpfac1lem4 19977 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
124123expr 456 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
125124exlimdv 1933 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
12688, 125mpd 15 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
1271263exp2 1355 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → ((𝑆𝑣) = { 0 } → ((𝑆 𝑣) = 𝑠 → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))))
128127impd 410 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
129128rexlimdva 3130 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
13079, 129biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
131130impd 410 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13273, 131sylan2b 594 . . . . . 6 ((𝜑𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
133132rexlimdva 3130 . . . . 5 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13472, 133syl5 34 . . . 4 (𝜑 → ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13571, 134mpand 695 . . 3 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13665, 135syld 47 . 2 (𝜑 → (𝑆𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
137910subg 19048 . . . . . 6 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
13817, 137syl 17 . . . . 5 (𝜑 → { 0 } ∈ (SubGrp‘𝐺))
139138adantr 480 . . . 4 ((𝜑𝑆 = 𝑈) → { 0 } ∈ (SubGrp‘𝐺))
14091subg0cl 19031 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
14129, 140syl 17 . . . . . . 7 (𝜑0𝑆)
142141snssd 4763 . . . . . 6 (𝜑 → { 0 } ⊆ 𝑆)
143142adantr 480 . . . . 5 ((𝜑𝑆 = 𝑈) → { 0 } ⊆ 𝑆)
144 sseqin2 4176 . . . . 5 ({ 0 } ⊆ 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
145143, 144sylib 218 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 ∩ { 0 }) = { 0 })
14692lsmss2 19564 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ { 0 } ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑆) → (𝑆 { 0 }) = 𝑆)
14729, 138, 142, 146syl3anc 1373 . . . . . 6 (𝜑 → (𝑆 { 0 }) = 𝑆)
148147eqeq1d 2731 . . . . 5 (𝜑 → ((𝑆 { 0 }) = 𝑈𝑆 = 𝑈))
149148biimpar 477 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 { 0 }) = 𝑈)
150 ineq2 4167 . . . . . . 7 (𝑡 = { 0 } → (𝑆𝑡) = (𝑆 ∩ { 0 }))
151150eqeq1d 2731 . . . . . 6 (𝑡 = { 0 } → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
152 oveq2 7361 . . . . . . 7 (𝑡 = { 0 } → (𝑆 𝑡) = (𝑆 { 0 }))
153152eqeq1d 2731 . . . . . 6 (𝑡 = { 0 } → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 { 0 }) = 𝑈))
154151, 153anbi12d 632 . . . . 5 (𝑡 = { 0 } → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)))
155154rspcev 3579 . . . 4 (({ 0 } ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
156139, 145, 149, 155syl12anc 836 . . 3 ((𝜑𝑆 = 𝑈) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
157156ex 412 . 2 (𝜑 → (𝑆 = 𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
15826mrcsscl 17544 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐴} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐴}) ⊆ 𝑈)
15920, 32, 21, 158syl3anc 1373 . . . 4 (𝜑 → (𝐾‘{𝐴}) ⊆ 𝑈)
16014, 159eqsstrid 3976 . . 3 (𝜑𝑆𝑈)
161 sspss 4055 . . 3 (𝑆𝑈 ↔ (𝑆𝑈𝑆 = 𝑈))
162160, 161sylib 218 . 2 (𝜑 → (𝑆𝑈𝑆 = 𝑈))
163136, 157, 162mpjaod 860 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cdif 3902  cin 3904  wss 3905  wpss 3906  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861   class class class wbr 5095   Or wor 5530  dom cdm 5623  cfv 6486  (class class class)co 7353   [] crpss 7662  Fincfn 8879  cardccrd 9850  Basecbs 17138  0gc0g 17361  Moorecmre 17502  mrClscmrc 17503  ACScacs 17505  Grpcgrp 18830  .gcmg 18964  SubGrpcsubg 19017  odcod 19421  gExcgex 19422   pGrp cpgp 19423  LSSumclsm 19531  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-eqg 19022  df-ga 19187  df-cntz 19214  df-od 19425  df-gex 19426  df-pgp 19427  df-lsm 19533  df-cmn 19679  df-abl 19680
This theorem is referenced by:  pgpfac1  19979
  Copyright terms: Public domain W3C validator