MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 19951
Description: Lemma for pgpfac1 19952. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrClsβ€˜(SubGrpβ€˜πΊ))
pgpfac1.s 𝑆 = (πΎβ€˜{𝐴})
pgpfac1.b 𝐡 = (Baseβ€˜πΊ)
pgpfac1.o 𝑂 = (odβ€˜πΊ)
pgpfac1.e 𝐸 = (gExβ€˜πΊ)
pgpfac1.z 0 = (0gβ€˜πΊ)
pgpfac1.l βŠ• = (LSSumβ€˜πΊ)
pgpfac1.p (πœ‘ β†’ 𝑃 pGrp 𝐺)
pgpfac1.g (πœ‘ β†’ 𝐺 ∈ Abel)
pgpfac1.n (πœ‘ β†’ 𝐡 ∈ Fin)
pgpfac1.oe (πœ‘ β†’ (π‘‚β€˜π΄) = 𝐸)
pgpfac1.u (πœ‘ β†’ π‘ˆ ∈ (SubGrpβ€˜πΊ))
pgpfac1.au (πœ‘ β†’ 𝐴 ∈ π‘ˆ)
pgpfac1.3 (πœ‘ β†’ βˆ€π‘  ∈ (SubGrpβ€˜πΊ)((𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (πœ‘ β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
Distinct variable groups:   𝑑,𝑠, 0   𝐴,𝑠,𝑑   βŠ• ,𝑠,𝑑   𝑃,𝑠,𝑑   𝐡,𝑠,𝑑   𝐺,𝑠,𝑑   π‘ˆ,𝑠,𝑑   𝑆,𝑠,𝑑   πœ‘,𝑠,𝑑   𝐾,𝑠,𝑑
Allowed substitution hints:   𝐸(𝑑,𝑠)   𝑂(𝑑,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑒 𝑣 𝑦 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ Fin)
2 pwfi 9180 . . . . . . . . . 10 (𝐡 ∈ Fin ↔ 𝒫 𝐡 ∈ Fin)
31, 2sylib 217 . . . . . . . . 9 (πœ‘ β†’ 𝒫 𝐡 ∈ Fin)
43adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ 𝒫 𝐡 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜πΊ)
65subgss 19009 . . . . . . . . . . 11 (𝑣 ∈ (SubGrpβ€˜πΊ) β†’ 𝑣 βŠ† 𝐡)
763ad2ant2 1134 . . . . . . . . . 10 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ) ∧ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)) β†’ 𝑣 βŠ† 𝐡)
8 velpw 4607 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐡 ↔ 𝑣 βŠ† 𝐡)
97, 8sylibr 233 . . . . . . . . 9 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ) ∧ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)) β†’ 𝑣 ∈ 𝒫 𝐡)
109rabssdv 4072 . . . . . . . 8 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} βŠ† 𝒫 𝐡)
114, 10ssfid 9269 . . . . . . 7 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ Fin)
12 finnum 9945 . . . . . . 7 ({𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ Fin β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ dom card)
1311, 12syl 17 . . . . . 6 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ dom card)
14 pgpfac1.s . . . . . . . . . 10 𝑆 = (πΎβ€˜{𝐴})
15 pgpfac1.g . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐺 ∈ Abel)
16 ablgrp 19655 . . . . . . . . . . . . 13 (𝐺 ∈ Abel β†’ 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐺 ∈ Grp)
185subgacs 19043 . . . . . . . . . . . 12 (𝐺 ∈ Grp β†’ (SubGrpβ€˜πΊ) ∈ (ACSβ€˜π΅))
19 acsmre 17598 . . . . . . . . . . . 12 ((SubGrpβ€˜πΊ) ∈ (ACSβ€˜π΅) β†’ (SubGrpβ€˜πΊ) ∈ (Mooreβ€˜π΅))
2017, 18, 193syl 18 . . . . . . . . . . 11 (πœ‘ β†’ (SubGrpβ€˜πΊ) ∈ (Mooreβ€˜π΅))
21 pgpfac1.u . . . . . . . . . . . . 13 (πœ‘ β†’ π‘ˆ ∈ (SubGrpβ€˜πΊ))
225subgss 19009 . . . . . . . . . . . . 13 (π‘ˆ ∈ (SubGrpβ€˜πΊ) β†’ π‘ˆ βŠ† 𝐡)
2321, 22syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ π‘ˆ βŠ† 𝐡)
24 pgpfac1.au . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 ∈ π‘ˆ)
2523, 24sseldd 3983 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ 𝐡)
26 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrClsβ€˜(SubGrpβ€˜πΊ))
2726mrcsncl 17558 . . . . . . . . . . 11 (((SubGrpβ€˜πΊ) ∈ (Mooreβ€˜π΅) ∧ 𝐴 ∈ 𝐡) β†’ (πΎβ€˜{𝐴}) ∈ (SubGrpβ€˜πΊ))
2820, 25, 27syl2anc 584 . . . . . . . . . 10 (πœ‘ β†’ (πΎβ€˜{𝐴}) ∈ (SubGrpβ€˜πΊ))
2914, 28eqeltrid 2837 . . . . . . . . 9 (πœ‘ β†’ 𝑆 ∈ (SubGrpβ€˜πΊ))
3029adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ 𝑆 ∈ (SubGrpβ€˜πΊ))
31 simpr 485 . . . . . . . 8 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ 𝑆 ⊊ π‘ˆ)
3224snssd 4812 . . . . . . . . . . . . 13 (πœ‘ β†’ {𝐴} βŠ† π‘ˆ)
3332, 23sstrd 3992 . . . . . . . . . . . 12 (πœ‘ β†’ {𝐴} βŠ† 𝐡)
3420, 26, 33mrcssidd 17571 . . . . . . . . . . 11 (πœ‘ β†’ {𝐴} βŠ† (πΎβ€˜{𝐴}))
3534, 14sseqtrrdi 4033 . . . . . . . . . 10 (πœ‘ β†’ {𝐴} βŠ† 𝑆)
36 snssg 4787 . . . . . . . . . . 11 (𝐴 ∈ 𝐡 β†’ (𝐴 ∈ 𝑆 ↔ {𝐴} βŠ† 𝑆))
3725, 36syl 17 . . . . . . . . . 10 (πœ‘ β†’ (𝐴 ∈ 𝑆 ↔ {𝐴} βŠ† 𝑆))
3835, 37mpbird 256 . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ 𝑆)
3938adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ 𝐴 ∈ 𝑆)
40 psseq1 4087 . . . . . . . . . 10 (𝑣 = 𝑆 β†’ (𝑣 ⊊ π‘ˆ ↔ 𝑆 ⊊ π‘ˆ))
41 eleq2 2822 . . . . . . . . . 10 (𝑣 = 𝑆 β†’ (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑆))
4240, 41anbi12d 631 . . . . . . . . 9 (𝑣 = 𝑆 β†’ ((𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣) ↔ (𝑆 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑆)))
4342rspcev 3612 . . . . . . . 8 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ (𝑆 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑆)) β†’ βˆƒπ‘£ ∈ (SubGrpβ€˜πΊ)(𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣))
4430, 31, 39, 43syl12anc 835 . . . . . . 7 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ βˆƒπ‘£ ∈ (SubGrpβ€˜πΊ)(𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣))
45 rabn0 4385 . . . . . . 7 ({𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} β‰  βˆ… ↔ βˆƒπ‘£ ∈ (SubGrpβ€˜πΊ)(𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣))
4644, 45sylibr 233 . . . . . 6 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} β‰  βˆ…)
47 simpr1 1194 . . . . . . . . 9 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ 𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)})
48 simpr2 1195 . . . . . . . . . 10 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ 𝑒 β‰  βˆ…)
4911adantr 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ Fin)
5049, 47ssfid 9269 . . . . . . . . . 10 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ 𝑒 ∈ Fin)
51 simpr3 1196 . . . . . . . . . 10 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ [⊊] Or 𝑒)
52 fin1a2lem10 10406 . . . . . . . . . 10 ((𝑒 β‰  βˆ… ∧ 𝑒 ∈ Fin ∧ [⊊] Or 𝑒) β†’ βˆͺ 𝑒 ∈ 𝑒)
5348, 50, 51, 52syl3anc 1371 . . . . . . . . 9 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ βˆͺ 𝑒 ∈ 𝑒)
5447, 53sseldd 3983 . . . . . . . 8 (((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) ∧ (𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒)) β†’ βˆͺ 𝑒 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)})
5554ex 413 . . . . . . 7 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ ((𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒) β†’ βˆͺ 𝑒 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}))
5655alrimiv 1930 . . . . . 6 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ βˆ€π‘’((𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒) β†’ βˆͺ 𝑒 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}))
57 zornn0g 10502 . . . . . 6 (({𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} β‰  βˆ… ∧ βˆ€π‘’((𝑒 βŠ† {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ∧ 𝑒 β‰  βˆ… ∧ [⊊] Or 𝑒) β†’ βˆͺ 𝑒 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)})) β†’ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} Β¬ 𝑠 ⊊ 𝑀)
5813, 46, 56, 57syl3anc 1371 . . . . 5 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} Β¬ 𝑠 ⊊ 𝑀)
59 psseq1 4087 . . . . . . . 8 (𝑣 = 𝑀 β†’ (𝑣 ⊊ π‘ˆ ↔ 𝑀 ⊊ π‘ˆ))
60 eleq2 2822 . . . . . . . 8 (𝑣 = 𝑀 β†’ (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑀))
6159, 60anbi12d 631 . . . . . . 7 (𝑣 = 𝑀 β†’ ((𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣) ↔ (𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀)))
6261ralrab 3689 . . . . . 6 (βˆ€π‘€ ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} Β¬ 𝑠 ⊊ 𝑀 ↔ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))
6362rexbii 3094 . . . . 5 (βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} Β¬ 𝑠 ⊊ 𝑀 ↔ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))
6458, 63sylib 217 . . . 4 ((πœ‘ ∧ 𝑆 ⊊ π‘ˆ) β†’ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))
6564ex 413 . . 3 (πœ‘ β†’ (𝑆 ⊊ π‘ˆ β†’ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)))
66 pgpfac1.3 . . . . 5 (πœ‘ β†’ βˆ€π‘  ∈ (SubGrpβ€˜πΊ)((𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠)))
67 psseq1 4087 . . . . . . 7 (𝑣 = 𝑠 β†’ (𝑣 ⊊ π‘ˆ ↔ 𝑠 ⊊ π‘ˆ))
68 eleq2 2822 . . . . . . 7 (𝑣 = 𝑠 β†’ (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑠))
6967, 68anbi12d 631 . . . . . 6 (𝑣 = 𝑠 β†’ ((𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣) ↔ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠)))
7069ralrab 3689 . . . . 5 (βˆ€π‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ↔ βˆ€π‘  ∈ (SubGrpβ€˜πΊ)((𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠)))
7166, 70sylibr 233 . . . 4 (πœ‘ β†’ βˆ€π‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠))
72 r19.29 3114 . . . . 5 ((βˆ€π‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) β†’ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} (βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)))
7369elrab 3683 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} ↔ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠)))
74 ineq2 4206 . . . . . . . . . . . 12 (𝑑 = 𝑣 β†’ (𝑆 ∩ 𝑑) = (𝑆 ∩ 𝑣))
7574eqeq1d 2734 . . . . . . . . . . 11 (𝑑 = 𝑣 β†’ ((𝑆 ∩ 𝑑) = { 0 } ↔ (𝑆 ∩ 𝑣) = { 0 }))
76 oveq2 7419 . . . . . . . . . . . 12 (𝑑 = 𝑣 β†’ (𝑆 βŠ• 𝑑) = (𝑆 βŠ• 𝑣))
7776eqeq1d 2734 . . . . . . . . . . 11 (𝑑 = 𝑣 β†’ ((𝑆 βŠ• 𝑑) = 𝑠 ↔ (𝑆 βŠ• 𝑣) = 𝑠))
7875, 77anbi12d 631 . . . . . . . . . 10 (𝑑 = 𝑣 β†’ (((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ↔ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠)))
7978cbvrexvw 3235 . . . . . . . . 9 (βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ↔ βˆƒπ‘£ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠))
80 simprrl 779 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) β†’ 𝑠 ⊊ π‘ˆ)
8180ad2antrr 724 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ 𝑠 ⊊ π‘ˆ)
82 simpr2 1195 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ (𝑆 βŠ• 𝑣) = 𝑠)
8382psseq1d 4092 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ ((𝑆 βŠ• 𝑣) ⊊ π‘ˆ ↔ 𝑠 ⊊ π‘ˆ))
8481, 83mpbird 256 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ (𝑆 βŠ• 𝑣) ⊊ π‘ˆ)
85 pssdif 4366 . . . . . . . . . . . . . . 15 ((𝑆 βŠ• 𝑣) ⊊ π‘ˆ β†’ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)) β‰  βˆ…)
86 n0 4346 . . . . . . . . . . . . . . 15 ((π‘ˆ βˆ– (𝑆 βŠ• 𝑣)) β‰  βˆ… ↔ βˆƒπ‘ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))
8785, 86sylib 217 . . . . . . . . . . . . . 14 ((𝑆 βŠ• 𝑣) ⊊ π‘ˆ β†’ βˆƒπ‘ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))
8884, 87syl 17 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ βˆƒπ‘ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))
89 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (odβ€˜πΊ)
90 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gExβ€˜πΊ)
91 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0gβ€˜πΊ)
92 pgpfac1.l . . . . . . . . . . . . . . . 16 βŠ• = (LSSumβ€˜πΊ)
93 pgpfac1.p . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑃 pGrp 𝐺)
9493ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝑃 pGrp 𝐺)
9515ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝐺 ∈ Abel)
961ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝐡 ∈ Fin)
97 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (π‘‚β€˜π΄) = 𝐸)
9897ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (π‘‚β€˜π΄) = 𝐸)
9921ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ π‘ˆ ∈ (SubGrpβ€˜πΊ))
10024ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝐴 ∈ π‘ˆ)
101 simplr 767 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝑣 ∈ (SubGrpβ€˜πΊ))
102 simprl1 1218 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (𝑆 ∩ 𝑣) = { 0 })
10384adantrr 715 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (𝑆 βŠ• 𝑣) ⊊ π‘ˆ)
104103pssssd 4097 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (𝑆 βŠ• 𝑣) βŠ† π‘ˆ)
105 simprl3 1220 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))
10682adantrr 715 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (𝑆 βŠ• 𝑣) = 𝑠)
107 psseq1 4087 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 βŠ• 𝑣) = 𝑠 β†’ ((𝑆 βŠ• 𝑣) ⊊ 𝑦 ↔ 𝑠 ⊊ 𝑦))
108107notbid 317 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 βŠ• 𝑣) = 𝑠 β†’ (Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦 ↔ Β¬ 𝑠 ⊊ 𝑦))
109108imbi2d 340 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 βŠ• 𝑣) = 𝑠 β†’ (((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦) ↔ ((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ 𝑠 ⊊ 𝑦)))
110109ralbidv 3177 . . . . . . . . . . . . . . . . . . 19 ((𝑆 βŠ• 𝑣) = 𝑠 β†’ (βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦) ↔ βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ 𝑠 ⊊ 𝑦)))
111 psseq1 4087 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑀 β†’ (𝑦 ⊊ π‘ˆ ↔ 𝑀 ⊊ π‘ˆ))
112 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑀 β†’ (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑀))
113111, 112anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑀 β†’ ((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) ↔ (𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀)))
114 psseq2 4088 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑀 β†’ (𝑠 ⊊ 𝑦 ↔ 𝑠 ⊊ 𝑀))
115114notbid 317 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑀 β†’ (Β¬ 𝑠 ⊊ 𝑦 ↔ Β¬ 𝑠 ⊊ 𝑀))
116113, 115imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑀 β†’ (((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ 𝑠 ⊊ 𝑦) ↔ ((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)))
117116cbvralvw 3234 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ 𝑠 ⊊ 𝑦) ↔ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))
118110, 117bitrdi 286 . . . . . . . . . . . . . . . . . 18 ((𝑆 βŠ• 𝑣) = 𝑠 β†’ (βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦) ↔ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)))
119106, 118syl 17 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ (βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦) ↔ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)))
120105, 119mpbird 256 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ βˆ€π‘¦ ∈ (SubGrpβ€˜πΊ)((𝑦 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑦) β†’ Β¬ (𝑆 βŠ• 𝑣) ⊊ 𝑦))
121 simprr 771 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))
122 eqid 2732 . . . . . . . . . . . . . . . 16 (.gβ€˜πΊ) = (.gβ€˜πΊ)
12326, 14, 5, 89, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 104, 120, 121, 122pgpfac1lem4 19950 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) ∧ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)))) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
124123expr 457 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ (𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
125124exlimdv 1936 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ (βˆƒπ‘ 𝑏 ∈ (π‘ˆ βˆ– (𝑆 βŠ• 𝑣)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
12688, 125mpd 15 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) ∧ ((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠 ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀))) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
1271263exp2 1354 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) β†’ ((𝑆 ∩ 𝑣) = { 0 } β†’ ((𝑆 βŠ• 𝑣) = 𝑠 β†’ (βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))))
128127impd 411 . . . . . . . . . 10 (((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) ∧ 𝑣 ∈ (SubGrpβ€˜πΊ)) β†’ (((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠) β†’ (βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))))
129128rexlimdva 3155 . . . . . . . . 9 ((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) β†’ (βˆƒπ‘£ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑣) = { 0 } ∧ (𝑆 βŠ• 𝑣) = 𝑠) β†’ (βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))))
13079, 129biimtrid 241 . . . . . . . 8 ((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) β†’ (βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) β†’ (βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))))
131130impd 411 . . . . . . 7 ((πœ‘ ∧ (𝑠 ∈ (SubGrpβ€˜πΊ) ∧ (𝑠 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑠))) β†’ ((βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
13273, 131sylan2b 594 . . . . . 6 ((πœ‘ ∧ 𝑠 ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}) β†’ ((βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
133132rexlimdva 3155 . . . . 5 (πœ‘ β†’ (βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)} (βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
13472, 133syl5 34 . . . 4 (πœ‘ β†’ ((βˆ€π‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = 𝑠) ∧ βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
13571, 134mpand 693 . . 3 (πœ‘ β†’ (βˆƒπ‘  ∈ {𝑣 ∈ (SubGrpβ€˜πΊ) ∣ (𝑣 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑣)}βˆ€π‘€ ∈ (SubGrpβ€˜πΊ)((𝑀 ⊊ π‘ˆ ∧ 𝐴 ∈ 𝑀) β†’ Β¬ 𝑠 ⊊ 𝑀) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
13665, 135syld 47 . 2 (πœ‘ β†’ (𝑆 ⊊ π‘ˆ β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
137910subg 19033 . . . . . 6 (𝐺 ∈ Grp β†’ { 0 } ∈ (SubGrpβ€˜πΊ))
13817, 137syl 17 . . . . 5 (πœ‘ β†’ { 0 } ∈ (SubGrpβ€˜πΊ))
139138adantr 481 . . . 4 ((πœ‘ ∧ 𝑆 = π‘ˆ) β†’ { 0 } ∈ (SubGrpβ€˜πΊ))
14091subg0cl 19016 . . . . . . . 8 (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 0 ∈ 𝑆)
14129, 140syl 17 . . . . . . 7 (πœ‘ β†’ 0 ∈ 𝑆)
142141snssd 4812 . . . . . 6 (πœ‘ β†’ { 0 } βŠ† 𝑆)
143142adantr 481 . . . . 5 ((πœ‘ ∧ 𝑆 = π‘ˆ) β†’ { 0 } βŠ† 𝑆)
144 sseqin2 4215 . . . . 5 ({ 0 } βŠ† 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
145143, 144sylib 217 . . . 4 ((πœ‘ ∧ 𝑆 = π‘ˆ) β†’ (𝑆 ∩ { 0 }) = { 0 })
14692lsmss2 19537 . . . . . . 7 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ { 0 } ∈ (SubGrpβ€˜πΊ) ∧ { 0 } βŠ† 𝑆) β†’ (𝑆 βŠ• { 0 }) = 𝑆)
14729, 138, 142, 146syl3anc 1371 . . . . . 6 (πœ‘ β†’ (𝑆 βŠ• { 0 }) = 𝑆)
148147eqeq1d 2734 . . . . 5 (πœ‘ β†’ ((𝑆 βŠ• { 0 }) = π‘ˆ ↔ 𝑆 = π‘ˆ))
149148biimpar 478 . . . 4 ((πœ‘ ∧ 𝑆 = π‘ˆ) β†’ (𝑆 βŠ• { 0 }) = π‘ˆ)
150 ineq2 4206 . . . . . . 7 (𝑑 = { 0 } β†’ (𝑆 ∩ 𝑑) = (𝑆 ∩ { 0 }))
151150eqeq1d 2734 . . . . . 6 (𝑑 = { 0 } β†’ ((𝑆 ∩ 𝑑) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
152 oveq2 7419 . . . . . . 7 (𝑑 = { 0 } β†’ (𝑆 βŠ• 𝑑) = (𝑆 βŠ• { 0 }))
153152eqeq1d 2734 . . . . . 6 (𝑑 = { 0 } β†’ ((𝑆 βŠ• 𝑑) = π‘ˆ ↔ (𝑆 βŠ• { 0 }) = π‘ˆ))
154151, 153anbi12d 631 . . . . 5 (𝑑 = { 0 } β†’ (((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 βŠ• { 0 }) = π‘ˆ)))
155154rspcev 3612 . . . 4 (({ 0 } ∈ (SubGrpβ€˜πΊ) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 βŠ• { 0 }) = π‘ˆ)) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
156139, 145, 149, 155syl12anc 835 . . 3 ((πœ‘ ∧ 𝑆 = π‘ˆ) β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
157156ex 413 . 2 (πœ‘ β†’ (𝑆 = π‘ˆ β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ)))
15826mrcsscl 17566 . . . . 5 (((SubGrpβ€˜πΊ) ∈ (Mooreβ€˜π΅) ∧ {𝐴} βŠ† π‘ˆ ∧ π‘ˆ ∈ (SubGrpβ€˜πΊ)) β†’ (πΎβ€˜{𝐴}) βŠ† π‘ˆ)
15920, 32, 21, 158syl3anc 1371 . . . 4 (πœ‘ β†’ (πΎβ€˜{𝐴}) βŠ† π‘ˆ)
16014, 159eqsstrid 4030 . . 3 (πœ‘ β†’ 𝑆 βŠ† π‘ˆ)
161 sspss 4099 . . 3 (𝑆 βŠ† π‘ˆ ↔ (𝑆 ⊊ π‘ˆ ∨ 𝑆 = π‘ˆ))
162160, 161sylib 217 . 2 (πœ‘ β†’ (𝑆 ⊊ π‘ˆ ∨ 𝑆 = π‘ˆ))
163136, 157, 162mpjaod 858 1 (πœ‘ β†’ βˆƒπ‘‘ ∈ (SubGrpβ€˜πΊ)((𝑆 ∩ 𝑑) = { 0 } ∧ (𝑆 βŠ• 𝑑) = π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948   ⊊ wpss 3949  βˆ…c0 4322  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908   class class class wbr 5148   Or wor 5587  dom cdm 5676  β€˜cfv 6543  (class class class)co 7411   [⊊] crpss 7714  Fincfn 8941  cardccrd 9932  Basecbs 17146  0gc0g 17387  Moorecmre 17528  mrClscmrc 17529  ACScacs 17531  Grpcgrp 18821  .gcmg 18952  SubGrpcsubg 19002  odcod 19394  gExcgex 19395   pGrp cpgp 19396  LSSumclsm 19504  Abelcabl 19651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-acn 9939  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-q 12935  df-rp 12977  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-dvds 16200  df-gcd 16438  df-prm 16611  df-pc 16772  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-0g 17389  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-mulg 18953  df-subg 19005  df-eqg 19007  df-ga 19156  df-cntz 19183  df-od 19398  df-gex 19399  df-pgp 19400  df-lsm 19506  df-cmn 19652  df-abl 19653
This theorem is referenced by:  pgpfac1  19952
  Copyright terms: Public domain W3C validator