MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 19194
Description: Lemma for pgpfac1 19195. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.3 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡,𝑠, 0   𝐴,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝐵,𝑠,𝑡   𝐺,𝑠,𝑡   𝑈,𝑠,𝑡   𝑆,𝑠,𝑡   𝜑,𝑠,𝑡   𝐾,𝑠,𝑡
Allowed substitution hints:   𝐸(𝑡,𝑠)   𝑂(𝑡,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑢 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
2 pwfi 8803 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ 𝒫 𝐵 ∈ Fin)
31, 2sylib 221 . . . . . . . . 9 (𝜑 → 𝒫 𝐵 ∈ Fin)
43adantr 484 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝒫 𝐵 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
65subgss 18272 . . . . . . . . . . 11 (𝑣 ∈ (SubGrp‘𝐺) → 𝑣𝐵)
763ad2ant2 1131 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣𝐵)
8 velpw 4502 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐵𝑣𝐵)
97, 8sylibr 237 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣 ∈ 𝒫 𝐵)
109rabssdv 4002 . . . . . . . 8 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵)
114, 10ssfid 8725 . . . . . . 7 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
12 finnum 9361 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
1311, 12syl 17 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
14 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
15 pgpfac1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
16 ablgrp 18903 . . . . . . . . . . . . 13 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Grp)
185subgacs 18305 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
19 acsmre 16915 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2017, 18, 193syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
21 pgpfac1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubGrp‘𝐺))
225subgss 18272 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝑈𝐵)
24 pgpfac1.au . . . . . . . . . . . 12 (𝜑𝐴𝑈)
2523, 24sseldd 3916 . . . . . . . . . . 11 (𝜑𝐴𝐵)
26 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
2726mrcsncl 16875 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2820, 25, 27syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2914, 28eqeltrid 2894 . . . . . . . . 9 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3029adantr 484 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
31 simpr 488 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆𝑈)
3224snssd 4702 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ⊆ 𝑈)
3332, 23sstrd 3925 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
3420, 26, 33mrcssidd 16888 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
3534, 14sseqtrrdi 3966 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
36 snssg 4678 . . . . . . . . . . 11 (𝐴𝐵 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3725, 36syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3835, 37mpbird 260 . . . . . . . . 9 (𝜑𝐴𝑆)
3938adantr 484 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝐴𝑆)
40 psseq1 4015 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝑣𝑈𝑆𝑈))
41 eleq2 2878 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝐴𝑣𝐴𝑆))
4240, 41anbi12d 633 . . . . . . . . 9 (𝑣 = 𝑆 → ((𝑣𝑈𝐴𝑣) ↔ (𝑆𝑈𝐴𝑆)))
4342rspcev 3571 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑈𝐴𝑆)) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4430, 31, 39, 43syl12anc 835 . . . . . . 7 ((𝜑𝑆𝑈) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
45 rabn0 4293 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4644, 45sylibr 237 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅)
47 simpr1 1191 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
48 simpr2 1192 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ≠ ∅)
4911adantr 484 . . . . . . . . . . 11 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
5049, 47ssfid 8725 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ Fin)
51 simpr3 1193 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → [] Or 𝑢)
52 fin1a2lem10 9820 . . . . . . . . . 10 ((𝑢 ≠ ∅ ∧ 𝑢 ∈ Fin ∧ [] Or 𝑢) → 𝑢𝑢)
5348, 50, 51, 52syl3anc 1368 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢𝑢)
5447, 53sseldd 3916 . . . . . . . 8 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
5554ex 416 . . . . . . 7 ((𝜑𝑆𝑈) → ((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
5655alrimiv 1928 . . . . . 6 ((𝜑𝑆𝑈) → ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
57 zornn0g 9916 . . . . . 6 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ∧ ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
5813, 46, 56, 57syl3anc 1368 . . . . 5 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
59 psseq1 4015 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑈𝑤𝑈))
60 eleq2 2878 . . . . . . . 8 (𝑣 = 𝑤 → (𝐴𝑣𝐴𝑤))
6159, 60anbi12d 633 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑈𝐴𝑣) ↔ (𝑤𝑈𝐴𝑤)))
6261ralrab 3633 . . . . . 6 (∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6362rexbii 3210 . . . . 5 (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6458, 63sylib 221 . . . 4 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6564ex 416 . . 3 (𝜑 → (𝑆𝑈 → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
66 pgpfac1.3 . . . . 5 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
67 psseq1 4015 . . . . . . 7 (𝑣 = 𝑠 → (𝑣𝑈𝑠𝑈))
68 eleq2 2878 . . . . . . 7 (𝑣 = 𝑠 → (𝐴𝑣𝐴𝑠))
6967, 68anbi12d 633 . . . . . 6 (𝑣 = 𝑠 → ((𝑣𝑈𝐴𝑣) ↔ (𝑠𝑈𝐴𝑠)))
7069ralrab 3633 . . . . 5 (∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
7166, 70sylibr 237 . . . 4 (𝜑 → ∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))
72 r19.29 3216 . . . . 5 ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
7369elrab 3628 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠)))
74 ineq2 4133 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆𝑡) = (𝑆𝑣))
7574eqeq1d 2800 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆𝑡) = { 0 } ↔ (𝑆𝑣) = { 0 }))
76 oveq2 7143 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆 𝑡) = (𝑆 𝑣))
7776eqeq1d 2800 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑣) = 𝑠))
7875, 77anbi12d 633 . . . . . . . . . 10 (𝑡 = 𝑣 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠)))
7978cbvrexvw 3397 . . . . . . . . 9 (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠))
80 simprrl 780 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → 𝑠𝑈)
8180ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → 𝑠𝑈)
82 simpr2 1192 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) = 𝑠)
8382psseq1d 4020 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ((𝑆 𝑣) ⊊ 𝑈𝑠𝑈))
8481, 83mpbird 260 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) ⊊ 𝑈)
85 pssdif 4280 . . . . . . . . . . . . . . 15 ((𝑆 𝑣) ⊊ 𝑈 → (𝑈 ∖ (𝑆 𝑣)) ≠ ∅)
86 n0 4260 . . . . . . . . . . . . . . 15 ((𝑈 ∖ (𝑆 𝑣)) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8785, 86sylib 221 . . . . . . . . . . . . . 14 ((𝑆 𝑣) ⊊ 𝑈 → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8884, 87syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
89 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
90 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gEx‘𝐺)
91 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0g𝐺)
92 pgpfac1.l . . . . . . . . . . . . . . . 16 = (LSSum‘𝐺)
93 pgpfac1.p . . . . . . . . . . . . . . . . 17 (𝜑𝑃 pGrp 𝐺)
9493ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑃 pGrp 𝐺)
9515ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐺 ∈ Abel)
961ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐵 ∈ Fin)
97 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂𝐴) = 𝐸)
9897ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑂𝐴) = 𝐸)
9921ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑈 ∈ (SubGrp‘𝐺))
10024ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐴𝑈)
101 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑣 ∈ (SubGrp‘𝐺))
102 simprl1 1215 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆𝑣) = { 0 })
10384adantrr 716 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊊ 𝑈)
104103pssssd 4025 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊆ 𝑈)
105 simprl3 1217 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
10682adantrr 716 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) = 𝑠)
107 psseq1 4015 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 𝑣) = 𝑠 → ((𝑆 𝑣) ⊊ 𝑦𝑠𝑦))
108107notbid 321 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 𝑣) = 𝑠 → (¬ (𝑆 𝑣) ⊊ 𝑦 ↔ ¬ 𝑠𝑦))
109108imbi2d 344 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 𝑣) = 𝑠 → (((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
110109ralbidv 3162 . . . . . . . . . . . . . . . . . . 19 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
111 psseq1 4015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑦𝑈𝑤𝑈))
112 eleq2 2878 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
113111, 112anbi12d 633 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑦𝑈𝐴𝑦) ↔ (𝑤𝑈𝐴𝑤)))
114 psseq2 4016 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑠𝑦𝑠𝑤))
115114notbid 321 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (¬ 𝑠𝑦 ↔ ¬ 𝑠𝑤))
116113, 115imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
117116cbvralvw 3396 . . . . . . . . . . . . . . . . . . 19 (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
118110, 117syl6bb 290 . . . . . . . . . . . . . . . . . 18 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
119106, 118syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
120105, 119mpbird 260 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦))
121 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
122 eqid 2798 . . . . . . . . . . . . . . . 16 (.g𝐺) = (.g𝐺)
12326, 14, 5, 89, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 104, 120, 121, 122pgpfac1lem4 19193 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
124123expr 460 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
125124exlimdv 1934 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
12688, 125mpd 15 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
1271263exp2 1351 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → ((𝑆𝑣) = { 0 } → ((𝑆 𝑣) = 𝑠 → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))))
128127impd 414 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
129128rexlimdva 3243 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
13079, 129syl5bi 245 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
131130impd 414 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13273, 131sylan2b 596 . . . . . 6 ((𝜑𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
133132rexlimdva 3243 . . . . 5 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13472, 133syl5 34 . . . 4 (𝜑 → ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13571, 134mpand 694 . . 3 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13665, 135syld 47 . 2 (𝜑 → (𝑆𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
137910subg 18296 . . . . . 6 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
13817, 137syl 17 . . . . 5 (𝜑 → { 0 } ∈ (SubGrp‘𝐺))
139138adantr 484 . . . 4 ((𝜑𝑆 = 𝑈) → { 0 } ∈ (SubGrp‘𝐺))
14091subg0cl 18279 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
14129, 140syl 17 . . . . . . 7 (𝜑0𝑆)
142141snssd 4702 . . . . . 6 (𝜑 → { 0 } ⊆ 𝑆)
143142adantr 484 . . . . 5 ((𝜑𝑆 = 𝑈) → { 0 } ⊆ 𝑆)
144 sseqin2 4142 . . . . 5 ({ 0 } ⊆ 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
145143, 144sylib 221 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 ∩ { 0 }) = { 0 })
14692lsmss2 18785 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ { 0 } ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑆) → (𝑆 { 0 }) = 𝑆)
14729, 138, 142, 146syl3anc 1368 . . . . . 6 (𝜑 → (𝑆 { 0 }) = 𝑆)
148147eqeq1d 2800 . . . . 5 (𝜑 → ((𝑆 { 0 }) = 𝑈𝑆 = 𝑈))
149148biimpar 481 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 { 0 }) = 𝑈)
150 ineq2 4133 . . . . . . 7 (𝑡 = { 0 } → (𝑆𝑡) = (𝑆 ∩ { 0 }))
151150eqeq1d 2800 . . . . . 6 (𝑡 = { 0 } → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
152 oveq2 7143 . . . . . . 7 (𝑡 = { 0 } → (𝑆 𝑡) = (𝑆 { 0 }))
153152eqeq1d 2800 . . . . . 6 (𝑡 = { 0 } → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 { 0 }) = 𝑈))
154151, 153anbi12d 633 . . . . 5 (𝑡 = { 0 } → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)))
155154rspcev 3571 . . . 4 (({ 0 } ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
156139, 145, 149, 155syl12anc 835 . . 3 ((𝜑𝑆 = 𝑈) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
157156ex 416 . 2 (𝜑 → (𝑆 = 𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
15826mrcsscl 16883 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐴} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐴}) ⊆ 𝑈)
15920, 32, 21, 158syl3anc 1368 . . . 4 (𝜑 → (𝐾‘{𝐴}) ⊆ 𝑈)
16014, 159eqsstrid 3963 . . 3 (𝜑𝑆𝑈)
161 sspss 4027 . . 3 (𝑆𝑈 ↔ (𝑆𝑈𝑆 = 𝑈))
162160, 161sylib 221 . 2 (𝜑 → (𝑆𝑈𝑆 = 𝑈))
163136, 157, 162mpjaod 857 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  cdif 3878  cin 3880  wss 3881  wpss 3882  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   class class class wbr 5030   Or wor 5437  dom cdm 5519  cfv 6324  (class class class)co 7135   [] crpss 7428  Fincfn 8492  cardccrd 9348  Basecbs 16475  0gc0g 16705  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18095  .gcmg 18216  SubGrpcsubg 18265  odcod 18644  gExcgex 18645   pGrp cpgp 18646  LSSumclsm 18751  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-eqg 18270  df-ga 18412  df-cntz 18439  df-od 18648  df-gex 18649  df-pgp 18650  df-lsm 18753  df-cmn 18900  df-abl 18901
This theorem is referenced by:  pgpfac1  19195
  Copyright terms: Public domain W3C validator