MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 18759
Description: Lemma for pgpfac1 18760. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.3 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡,𝑠, 0   𝐴,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝐵,𝑠,𝑡   𝐺,𝑠,𝑡   𝑈,𝑠,𝑡   𝑆,𝑠,𝑡   𝜑,𝑠,𝑡   𝐾,𝑠,𝑡
Allowed substitution hints:   𝐸(𝑡,𝑠)   𝑂(𝑡,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑢 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
2 pwfi 8472 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ 𝒫 𝐵 ∈ Fin)
31, 2sylib 209 . . . . . . . . 9 (𝜑 → 𝒫 𝐵 ∈ Fin)
43adantr 472 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝒫 𝐵 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
65subgss 17873 . . . . . . . . . . 11 (𝑣 ∈ (SubGrp‘𝐺) → 𝑣𝐵)
763ad2ant2 1164 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣𝐵)
8 selpw 4324 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐵𝑣𝐵)
97, 8sylibr 225 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣 ∈ 𝒫 𝐵)
109rabssdv 3844 . . . . . . . 8 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵)
11 ssfi 8391 . . . . . . . 8 ((𝒫 𝐵 ∈ Fin ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
124, 10, 11syl2anc 579 . . . . . . 7 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
13 finnum 9029 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
1412, 13syl 17 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
15 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
16 pgpfac1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
17 ablgrp 18478 . . . . . . . . . . . . 13 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1816, 17syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Grp)
195subgacs 17907 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
20 acsmre 16592 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
22 pgpfac1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubGrp‘𝐺))
235subgss 17873 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2422, 23syl 17 . . . . . . . . . . . 12 (𝜑𝑈𝐵)
25 pgpfac1.au . . . . . . . . . . . 12 (𝜑𝐴𝑈)
2624, 25sseldd 3764 . . . . . . . . . . 11 (𝜑𝐴𝐵)
27 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
2827mrcsncl 16552 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2921, 26, 28syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3015, 29syl5eqel 2848 . . . . . . . . 9 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3130adantr 472 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
32 simpr 477 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆𝑈)
3325snssd 4496 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ⊆ 𝑈)
3433, 24sstrd 3773 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
3521, 27, 34mrcssidd 16565 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
3635, 15syl6sseqr 3814 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
37 snssg 4471 . . . . . . . . . . 11 (𝐴𝐵 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3826, 37syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3936, 38mpbird 248 . . . . . . . . 9 (𝜑𝐴𝑆)
4039adantr 472 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝐴𝑆)
41 psseq1 3857 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝑣𝑈𝑆𝑈))
42 eleq2 2833 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝐴𝑣𝐴𝑆))
4341, 42anbi12d 624 . . . . . . . . 9 (𝑣 = 𝑆 → ((𝑣𝑈𝐴𝑣) ↔ (𝑆𝑈𝐴𝑆)))
4443rspcev 3462 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑈𝐴𝑆)) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4531, 32, 40, 44syl12anc 865 . . . . . . 7 ((𝜑𝑆𝑈) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
46 rabn0 4124 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4745, 46sylibr 225 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅)
48 simpr1 1248 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
49 simpr2 1250 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ≠ ∅)
5012adantr 472 . . . . . . . . . . 11 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
51 ssfi 8391 . . . . . . . . . . 11 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin ∧ 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → 𝑢 ∈ Fin)
5250, 48, 51syl2anc 579 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ Fin)
53 simpr3 1252 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → [] Or 𝑢)
54 fin1a2lem10 9488 . . . . . . . . . 10 ((𝑢 ≠ ∅ ∧ 𝑢 ∈ Fin ∧ [] Or 𝑢) → 𝑢𝑢)
5549, 52, 53, 54syl3anc 1490 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢𝑢)
5648, 55sseldd 3764 . . . . . . . 8 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
5756ex 401 . . . . . . 7 ((𝜑𝑆𝑈) → ((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
5857alrimiv 2022 . . . . . 6 ((𝜑𝑆𝑈) → ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
59 zornn0g 9584 . . . . . 6 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ∧ ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
6014, 47, 58, 59syl3anc 1490 . . . . 5 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
61 psseq1 3857 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑈𝑤𝑈))
62 eleq2 2833 . . . . . . . 8 (𝑣 = 𝑤 → (𝐴𝑣𝐴𝑤))
6361, 62anbi12d 624 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑈𝐴𝑣) ↔ (𝑤𝑈𝐴𝑤)))
6463ralrab 3527 . . . . . 6 (∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6564rexbii 3188 . . . . 5 (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6660, 65sylib 209 . . . 4 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6766ex 401 . . 3 (𝜑 → (𝑆𝑈 → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
68 pgpfac1.3 . . . . 5 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
69 psseq1 3857 . . . . . . 7 (𝑣 = 𝑠 → (𝑣𝑈𝑠𝑈))
70 eleq2 2833 . . . . . . 7 (𝑣 = 𝑠 → (𝐴𝑣𝐴𝑠))
7169, 70anbi12d 624 . . . . . 6 (𝑣 = 𝑠 → ((𝑣𝑈𝐴𝑣) ↔ (𝑠𝑈𝐴𝑠)))
7271ralrab 3527 . . . . 5 (∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
7368, 72sylibr 225 . . . 4 (𝜑 → ∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))
74 r19.29 3219 . . . . 5 ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
7571elrab 3521 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠)))
76 ineq2 3972 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆𝑡) = (𝑆𝑣))
7776eqeq1d 2767 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆𝑡) = { 0 } ↔ (𝑆𝑣) = { 0 }))
78 oveq2 6854 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆 𝑡) = (𝑆 𝑣))
7978eqeq1d 2767 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑣) = 𝑠))
8077, 79anbi12d 624 . . . . . . . . . 10 (𝑡 = 𝑣 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠)))
8180cbvrexv 3320 . . . . . . . . 9 (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠))
82 simprrl 799 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → 𝑠𝑈)
8382ad2antrr 717 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → 𝑠𝑈)
84 simpr2 1250 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) = 𝑠)
8584psseq1d 3862 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ((𝑆 𝑣) ⊊ 𝑈𝑠𝑈))
8683, 85mpbird 248 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) ⊊ 𝑈)
87 pssdif 4111 . . . . . . . . . . . . . . 15 ((𝑆 𝑣) ⊊ 𝑈 → (𝑈 ∖ (𝑆 𝑣)) ≠ ∅)
88 n0 4097 . . . . . . . . . . . . . . 15 ((𝑈 ∖ (𝑆 𝑣)) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8987, 88sylib 209 . . . . . . . . . . . . . 14 ((𝑆 𝑣) ⊊ 𝑈 → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
9086, 89syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
91 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
92 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gEx‘𝐺)
93 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0g𝐺)
94 pgpfac1.l . . . . . . . . . . . . . . . 16 = (LSSum‘𝐺)
95 pgpfac1.p . . . . . . . . . . . . . . . . 17 (𝜑𝑃 pGrp 𝐺)
9695ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑃 pGrp 𝐺)
9716ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐺 ∈ Abel)
981ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐵 ∈ Fin)
99 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂𝐴) = 𝐸)
10099ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑂𝐴) = 𝐸)
10122ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑈 ∈ (SubGrp‘𝐺))
10225ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐴𝑈)
103 simplr 785 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑣 ∈ (SubGrp‘𝐺))
104 simprl1 1281 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆𝑣) = { 0 })
10586adantrr 708 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊊ 𝑈)
106105pssssd 3867 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊆ 𝑈)
107 simprl3 1285 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
10884adantrr 708 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) = 𝑠)
109 psseq1 3857 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 𝑣) = 𝑠 → ((𝑆 𝑣) ⊊ 𝑦𝑠𝑦))
110109notbid 309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 𝑣) = 𝑠 → (¬ (𝑆 𝑣) ⊊ 𝑦 ↔ ¬ 𝑠𝑦))
111110imbi2d 331 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 𝑣) = 𝑠 → (((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
112111ralbidv 3133 . . . . . . . . . . . . . . . . . . 19 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
113 psseq1 3857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑦𝑈𝑤𝑈))
114 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
115113, 114anbi12d 624 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑦𝑈𝐴𝑦) ↔ (𝑤𝑈𝐴𝑤)))
116 psseq2 3858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑠𝑦𝑠𝑤))
117116notbid 309 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (¬ 𝑠𝑦 ↔ ¬ 𝑠𝑤))
118115, 117imbi12d 335 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
119118cbvralv 3319 . . . . . . . . . . . . . . . . . . 19 (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
120112, 119syl6bb 278 . . . . . . . . . . . . . . . . . 18 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
121108, 120syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
122107, 121mpbird 248 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦))
123 simprr 789 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
124 eqid 2765 . . . . . . . . . . . . . . . 16 (.g𝐺) = (.g𝐺)
12527, 15, 5, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 122, 123, 124pgpfac1lem4 18758 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
126125expr 448 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
127126exlimdv 2028 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
12890, 127mpd 15 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
1291283exp2 1463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → ((𝑆𝑣) = { 0 } → ((𝑆 𝑣) = 𝑠 → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))))
130129impd 398 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
131130rexlimdva 3178 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
13281, 131syl5bi 233 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
133132impd 398 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13475, 133sylan2b 587 . . . . . 6 ((𝜑𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
135134rexlimdva 3178 . . . . 5 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13674, 135syl5 34 . . . 4 (𝜑 → ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13773, 136mpand 686 . . 3 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13867, 137syld 47 . 2 (𝜑 → (𝑆𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
139930subg 17897 . . . . . 6 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
14018, 139syl 17 . . . . 5 (𝜑 → { 0 } ∈ (SubGrp‘𝐺))
141140adantr 472 . . . 4 ((𝜑𝑆 = 𝑈) → { 0 } ∈ (SubGrp‘𝐺))
14293subg0cl 17880 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
14330, 142syl 17 . . . . . . 7 (𝜑0𝑆)
144143snssd 4496 . . . . . 6 (𝜑 → { 0 } ⊆ 𝑆)
145144adantr 472 . . . . 5 ((𝜑𝑆 = 𝑈) → { 0 } ⊆ 𝑆)
146 sseqin2 3981 . . . . 5 ({ 0 } ⊆ 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
147145, 146sylib 209 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 ∩ { 0 }) = { 0 })
14894lsmss2 18359 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ { 0 } ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑆) → (𝑆 { 0 }) = 𝑆)
14930, 140, 144, 148syl3anc 1490 . . . . . 6 (𝜑 → (𝑆 { 0 }) = 𝑆)
150149eqeq1d 2767 . . . . 5 (𝜑 → ((𝑆 { 0 }) = 𝑈𝑆 = 𝑈))
151150biimpar 469 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 { 0 }) = 𝑈)
152 ineq2 3972 . . . . . . 7 (𝑡 = { 0 } → (𝑆𝑡) = (𝑆 ∩ { 0 }))
153152eqeq1d 2767 . . . . . 6 (𝑡 = { 0 } → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
154 oveq2 6854 . . . . . . 7 (𝑡 = { 0 } → (𝑆 𝑡) = (𝑆 { 0 }))
155154eqeq1d 2767 . . . . . 6 (𝑡 = { 0 } → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 { 0 }) = 𝑈))
156153, 155anbi12d 624 . . . . 5 (𝑡 = { 0 } → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)))
157156rspcev 3462 . . . 4 (({ 0 } ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
158141, 147, 151, 157syl12anc 865 . . 3 ((𝜑𝑆 = 𝑈) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
159158ex 401 . 2 (𝜑 → (𝑆 = 𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
16027mrcsscl 16560 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐴} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐴}) ⊆ 𝑈)
16121, 33, 22, 160syl3anc 1490 . . . 4 (𝜑 → (𝐾‘{𝐴}) ⊆ 𝑈)
16215, 161syl5eqss 3811 . . 3 (𝜑𝑆𝑈)
163 sspss 3869 . . 3 (𝑆𝑈 ↔ (𝑆𝑈𝑆 = 𝑈))
164162, 163sylib 209 . 2 (𝜑 → (𝑆𝑈𝑆 = 𝑈))
165138, 159, 164mpjaod 886 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107  wal 1650   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  cdif 3731  cin 3733  wss 3734  wpss 3735  c0 4081  𝒫 cpw 4317  {csn 4336   cuni 4596   class class class wbr 4811   Or wor 5199  dom cdm 5279  cfv 6070  (class class class)co 6846   [] crpss 7138  Fincfn 8164  cardccrd 9016  Basecbs 16144  0gc0g 16380  Moorecmre 16522  mrClscmrc 16523  ACScacs 16525  Grpcgrp 17703  .gcmg 17821  SubGrpcsubg 17866  odcod 18222  gExcgex 18223   pGrp cpgp 18224  LSSumclsm 18327  Abelcabl 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-rpss 7139  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-omul 7773  df-er 7951  df-ec 7953  df-qs 7957  df-map 8066  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-xnn0 11615  df-z 11629  df-uz 11892  df-q 11995  df-rp 12034  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-sum 14716  df-dvds 15280  df-gcd 15512  df-prm 15680  df-pc 15835  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-0g 16382  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-grp 17706  df-minusg 17707  df-sbg 17708  df-mulg 17822  df-subg 17869  df-eqg 17871  df-ga 18000  df-cntz 18027  df-od 18226  df-gex 18227  df-pgp 18228  df-lsm 18329  df-cmn 18475  df-abl 18476
This theorem is referenced by:  pgpfac1  18760
  Copyright terms: Public domain W3C validator