MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 20011
Description: Lemma for pgpfac1 20012. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.3 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡,𝑠, 0   𝐴,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝐵,𝑠,𝑡   𝐺,𝑠,𝑡   𝑈,𝑠,𝑡   𝑆,𝑠,𝑡   𝜑,𝑠,𝑡   𝐾,𝑠,𝑡
Allowed substitution hints:   𝐸(𝑡,𝑠)   𝑂(𝑡,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑢 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
2 pwfi 9268 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ 𝒫 𝐵 ∈ Fin)
31, 2sylib 218 . . . . . . . . 9 (𝜑 → 𝒫 𝐵 ∈ Fin)
43adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝒫 𝐵 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
65subgss 19059 . . . . . . . . . . 11 (𝑣 ∈ (SubGrp‘𝐺) → 𝑣𝐵)
763ad2ant2 1134 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣𝐵)
8 velpw 4568 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐵𝑣𝐵)
97, 8sylibr 234 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣 ∈ 𝒫 𝐵)
109rabssdv 4038 . . . . . . . 8 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵)
114, 10ssfid 9212 . . . . . . 7 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
12 finnum 9901 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
1311, 12syl 17 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
14 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
15 pgpfac1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
16 ablgrp 19715 . . . . . . . . . . . . 13 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Grp)
185subgacs 19093 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
19 acsmre 17613 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2017, 18, 193syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
21 pgpfac1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubGrp‘𝐺))
225subgss 19059 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝑈𝐵)
24 pgpfac1.au . . . . . . . . . . . 12 (𝜑𝐴𝑈)
2523, 24sseldd 3947 . . . . . . . . . . 11 (𝜑𝐴𝐵)
26 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
2726mrcsncl 17573 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2820, 25, 27syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2914, 28eqeltrid 2832 . . . . . . . . 9 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3029adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
31 simpr 484 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆𝑈)
3224snssd 4773 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ⊆ 𝑈)
3332, 23sstrd 3957 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
3420, 26, 33mrcssidd 17586 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
3534, 14sseqtrrdi 3988 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
36 snssg 4747 . . . . . . . . . . 11 (𝐴𝐵 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3725, 36syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3835, 37mpbird 257 . . . . . . . . 9 (𝜑𝐴𝑆)
3938adantr 480 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝐴𝑆)
40 psseq1 4053 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝑣𝑈𝑆𝑈))
41 eleq2 2817 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝐴𝑣𝐴𝑆))
4240, 41anbi12d 632 . . . . . . . . 9 (𝑣 = 𝑆 → ((𝑣𝑈𝐴𝑣) ↔ (𝑆𝑈𝐴𝑆)))
4342rspcev 3588 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑈𝐴𝑆)) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4430, 31, 39, 43syl12anc 836 . . . . . . 7 ((𝜑𝑆𝑈) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
45 rabn0 4352 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4644, 45sylibr 234 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅)
47 simpr1 1195 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
48 simpr2 1196 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ≠ ∅)
4911adantr 480 . . . . . . . . . . 11 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
5049, 47ssfid 9212 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ Fin)
51 simpr3 1197 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → [] Or 𝑢)
52 fin1a2lem10 10362 . . . . . . . . . 10 ((𝑢 ≠ ∅ ∧ 𝑢 ∈ Fin ∧ [] Or 𝑢) → 𝑢𝑢)
5348, 50, 51, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢𝑢)
5447, 53sseldd 3947 . . . . . . . 8 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
5554ex 412 . . . . . . 7 ((𝜑𝑆𝑈) → ((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
5655alrimiv 1927 . . . . . 6 ((𝜑𝑆𝑈) → ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
57 zornn0g 10458 . . . . . 6 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ∧ ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
5813, 46, 56, 57syl3anc 1373 . . . . 5 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
59 psseq1 4053 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑈𝑤𝑈))
60 eleq2 2817 . . . . . . . 8 (𝑣 = 𝑤 → (𝐴𝑣𝐴𝑤))
6159, 60anbi12d 632 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑈𝐴𝑣) ↔ (𝑤𝑈𝐴𝑤)))
6261ralrab 3665 . . . . . 6 (∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6362rexbii 3076 . . . . 5 (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6458, 63sylib 218 . . . 4 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6564ex 412 . . 3 (𝜑 → (𝑆𝑈 → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
66 pgpfac1.3 . . . . 5 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
67 psseq1 4053 . . . . . . 7 (𝑣 = 𝑠 → (𝑣𝑈𝑠𝑈))
68 eleq2 2817 . . . . . . 7 (𝑣 = 𝑠 → (𝐴𝑣𝐴𝑠))
6967, 68anbi12d 632 . . . . . 6 (𝑣 = 𝑠 → ((𝑣𝑈𝐴𝑣) ↔ (𝑠𝑈𝐴𝑠)))
7069ralrab 3665 . . . . 5 (∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
7166, 70sylibr 234 . . . 4 (𝜑 → ∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))
72 r19.29 3094 . . . . 5 ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
7369elrab 3659 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠)))
74 ineq2 4177 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆𝑡) = (𝑆𝑣))
7574eqeq1d 2731 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆𝑡) = { 0 } ↔ (𝑆𝑣) = { 0 }))
76 oveq2 7395 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆 𝑡) = (𝑆 𝑣))
7776eqeq1d 2731 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑣) = 𝑠))
7875, 77anbi12d 632 . . . . . . . . . 10 (𝑡 = 𝑣 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠)))
7978cbvrexvw 3216 . . . . . . . . 9 (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠))
80 simprrl 780 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → 𝑠𝑈)
8180ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → 𝑠𝑈)
82 simpr2 1196 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) = 𝑠)
8382psseq1d 4058 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ((𝑆 𝑣) ⊊ 𝑈𝑠𝑈))
8481, 83mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) ⊊ 𝑈)
85 pssdif 4332 . . . . . . . . . . . . . . 15 ((𝑆 𝑣) ⊊ 𝑈 → (𝑈 ∖ (𝑆 𝑣)) ≠ ∅)
86 n0 4316 . . . . . . . . . . . . . . 15 ((𝑈 ∖ (𝑆 𝑣)) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8785, 86sylib 218 . . . . . . . . . . . . . 14 ((𝑆 𝑣) ⊊ 𝑈 → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8884, 87syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
89 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
90 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gEx‘𝐺)
91 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0g𝐺)
92 pgpfac1.l . . . . . . . . . . . . . . . 16 = (LSSum‘𝐺)
93 pgpfac1.p . . . . . . . . . . . . . . . . 17 (𝜑𝑃 pGrp 𝐺)
9493ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑃 pGrp 𝐺)
9515ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐺 ∈ Abel)
961ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐵 ∈ Fin)
97 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂𝐴) = 𝐸)
9897ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑂𝐴) = 𝐸)
9921ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑈 ∈ (SubGrp‘𝐺))
10024ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐴𝑈)
101 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑣 ∈ (SubGrp‘𝐺))
102 simprl1 1219 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆𝑣) = { 0 })
10384adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊊ 𝑈)
104103pssssd 4063 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊆ 𝑈)
105 simprl3 1221 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
10682adantrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) = 𝑠)
107 psseq1 4053 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 𝑣) = 𝑠 → ((𝑆 𝑣) ⊊ 𝑦𝑠𝑦))
108107notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 𝑣) = 𝑠 → (¬ (𝑆 𝑣) ⊊ 𝑦 ↔ ¬ 𝑠𝑦))
109108imbi2d 340 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 𝑣) = 𝑠 → (((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
110109ralbidv 3156 . . . . . . . . . . . . . . . . . . 19 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
111 psseq1 4053 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑦𝑈𝑤𝑈))
112 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
113111, 112anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑦𝑈𝐴𝑦) ↔ (𝑤𝑈𝐴𝑤)))
114 psseq2 4054 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑠𝑦𝑠𝑤))
115114notbid 318 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (¬ 𝑠𝑦 ↔ ¬ 𝑠𝑤))
116113, 115imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
117116cbvralvw 3215 . . . . . . . . . . . . . . . . . . 19 (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
118110, 117bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
119106, 118syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
120105, 119mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦))
121 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
122 eqid 2729 . . . . . . . . . . . . . . . 16 (.g𝐺) = (.g𝐺)
12326, 14, 5, 89, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 104, 120, 121, 122pgpfac1lem4 20010 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
124123expr 456 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
125124exlimdv 1933 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
12688, 125mpd 15 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
1271263exp2 1355 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → ((𝑆𝑣) = { 0 } → ((𝑆 𝑣) = 𝑠 → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))))
128127impd 410 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
129128rexlimdva 3134 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
13079, 129biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
131130impd 410 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13273, 131sylan2b 594 . . . . . 6 ((𝜑𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
133132rexlimdva 3134 . . . . 5 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13472, 133syl5 34 . . . 4 (𝜑 → ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13571, 134mpand 695 . . 3 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13665, 135syld 47 . 2 (𝜑 → (𝑆𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
137910subg 19083 . . . . . 6 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
13817, 137syl 17 . . . . 5 (𝜑 → { 0 } ∈ (SubGrp‘𝐺))
139138adantr 480 . . . 4 ((𝜑𝑆 = 𝑈) → { 0 } ∈ (SubGrp‘𝐺))
14091subg0cl 19066 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
14129, 140syl 17 . . . . . . 7 (𝜑0𝑆)
142141snssd 4773 . . . . . 6 (𝜑 → { 0 } ⊆ 𝑆)
143142adantr 480 . . . . 5 ((𝜑𝑆 = 𝑈) → { 0 } ⊆ 𝑆)
144 sseqin2 4186 . . . . 5 ({ 0 } ⊆ 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
145143, 144sylib 218 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 ∩ { 0 }) = { 0 })
14692lsmss2 19597 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ { 0 } ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑆) → (𝑆 { 0 }) = 𝑆)
14729, 138, 142, 146syl3anc 1373 . . . . . 6 (𝜑 → (𝑆 { 0 }) = 𝑆)
148147eqeq1d 2731 . . . . 5 (𝜑 → ((𝑆 { 0 }) = 𝑈𝑆 = 𝑈))
149148biimpar 477 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 { 0 }) = 𝑈)
150 ineq2 4177 . . . . . . 7 (𝑡 = { 0 } → (𝑆𝑡) = (𝑆 ∩ { 0 }))
151150eqeq1d 2731 . . . . . 6 (𝑡 = { 0 } → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
152 oveq2 7395 . . . . . . 7 (𝑡 = { 0 } → (𝑆 𝑡) = (𝑆 { 0 }))
153152eqeq1d 2731 . . . . . 6 (𝑡 = { 0 } → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 { 0 }) = 𝑈))
154151, 153anbi12d 632 . . . . 5 (𝑡 = { 0 } → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)))
155154rspcev 3588 . . . 4 (({ 0 } ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
156139, 145, 149, 155syl12anc 836 . . 3 ((𝜑𝑆 = 𝑈) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
157156ex 412 . 2 (𝜑 → (𝑆 = 𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
15826mrcsscl 17581 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐴} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐴}) ⊆ 𝑈)
15920, 32, 21, 158syl3anc 1373 . . . 4 (𝜑 → (𝐾‘{𝐴}) ⊆ 𝑈)
16014, 159eqsstrid 3985 . . 3 (𝜑𝑆𝑈)
161 sspss 4065 . . 3 (𝑆𝑈 ↔ (𝑆𝑈𝑆 = 𝑈))
162160, 161sylib 218 . 2 (𝜑 → (𝑆𝑈𝑆 = 𝑈))
163136, 157, 162mpjaod 860 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  cin 3913  wss 3914  wpss 3915  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107   Or wor 5545  dom cdm 5638  cfv 6511  (class class class)co 7387   [] crpss 7698  Fincfn 8918  cardccrd 9888  Basecbs 17179  0gc0g 17402  Moorecmre 17543  mrClscmrc 17544  ACScacs 17546  Grpcgrp 18865  .gcmg 18999  SubGrpcsubg 19052  odcod 19454  gExcgex 19455   pGrp cpgp 19456  LSSumclsm 19564  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-ga 19222  df-cntz 19249  df-od 19458  df-gex 19459  df-pgp 19460  df-lsm 19566  df-cmn 19712  df-abl 19713
This theorem is referenced by:  pgpfac1  20012
  Copyright terms: Public domain W3C validator