Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem6 Structured version   Visualization version   GIF version

Theorem dfon2lem6 35811
Description: Lemma for dfon2 35815. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
dfon2lem6 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Distinct variable group:   𝑥,𝑆,𝑦,𝑧

Proof of Theorem dfon2lem6
Dummy variables 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 4078 . . . . . . . . . . . . . . . . 17 (𝑦𝑆𝑦𝑆)
2 ssralv 4032 . . . . . . . . . . . . . . . . 17 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
43impcom 407 . . . . . . . . . . . . . . 15 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑦𝑆) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
54adantrr 717 . . . . . . . . . . . . . 14 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
65ad2ant2lr 748 . . . . . . . . . . . . 13 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
7 psseq2 4071 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
87anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑤 ∧ Tr 𝑧)))
9 elequ2 2124 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
108, 9imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1110albidv 1920 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1211rspccv 3603 . . . . . . . . . . . . 13 (∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
136, 12syl 17 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1413imp 406 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤))
15 eldifi 4111 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (𝑆𝑦) → 𝑠𝑆)
16 psseq2 4071 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1716anbi1d 631 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑠 ∧ Tr 𝑧)))
18 elequ2 2124 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1917, 18imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2019albidv 1920 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2120rspcv 3602 . . . . . . . . . . . . . . . 16 (𝑠𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2215, 21syl 17 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
23 psseq1 4070 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
24 treq 5242 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (Tr 𝑧 ↔ Tr 𝑡))
2523, 24anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑡𝑠 ∧ Tr 𝑡)))
26 elequ1 2116 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
2725, 26imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
2827cbvalvw 2036 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
2922, 28imbitrdi 251 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
3029impcom 407 . . . . . . . . . . . . 13 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑠 ∈ (𝑆𝑦)) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3130ad2ant2l 746 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3231adantr 480 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
33 vex 3468 . . . . . . . . . . . . 13 𝑤 ∈ V
34 vex 3468 . . . . . . . . . . . . 13 𝑠 ∈ V
3533, 34dfon2lem5 35810 . . . . . . . . . . . 12 ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → (𝑤𝑠𝑤 = 𝑠𝑠𝑤))
36 3orrot 1091 . . . . . . . . . . . . . 14 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠𝑠𝑤𝑤𝑠))
37 3orass 1089 . . . . . . . . . . . . . 14 ((𝑤 = 𝑠𝑠𝑤𝑤𝑠) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
3836, 37bitri 275 . . . . . . . . . . . . 13 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
39 eleq1a 2830 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑆𝑦) → (𝑤 = 𝑠𝑤 ∈ (𝑆𝑦)))
40 elndif 4113 . . . . . . . . . . . . . . . . . 18 (𝑤𝑦 → ¬ 𝑤 ∈ (𝑆𝑦))
4139, 40nsyli 157 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑤 = 𝑠))
4241imp 406 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ (𝑆𝑦) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4342adantll 714 . . . . . . . . . . . . . . 15 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4443adantll 714 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
45 orel1 888 . . . . . . . . . . . . . . 15 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → (𝑠𝑤𝑤𝑠)))
46 trss 5245 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
47 eldifn 4112 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (𝑆𝑦) → ¬ 𝑠𝑦)
48 ssel 3957 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤𝑦 → (𝑠𝑤𝑠𝑦))
4948con3d 152 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑦 → (¬ 𝑠𝑦 → ¬ 𝑠𝑤))
5047, 49syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤))
5146, 50syl9 77 . . . . . . . . . . . . . . . . . . 19 (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5251adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5352imp31 417 . . . . . . . . . . . . . . . . 17 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
5453adantll 714 . . . . . . . . . . . . . . . 16 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
55 orel1 888 . . . . . . . . . . . . . . . 16 𝑠𝑤 → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5654, 55syl 17 . . . . . . . . . . . . . . 15 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5745, 56syl9r 78 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → (¬ 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠)))
5844, 57mpd 15 . . . . . . . . . . . . 13 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠))
5938, 58biimtrid 242 . . . . . . . . . . . 12 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) → 𝑤𝑠))
6035, 59syl5 34 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → 𝑤𝑠))
6114, 32, 60mp2and 699 . . . . . . . . . 10 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → 𝑤𝑠)
6261ex 412 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦𝑤𝑠))
6362ssrdv 3969 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → 𝑦𝑠)
64 dfpss2 4068 . . . . . . . . 9 (𝑦𝑠 ↔ (𝑦𝑠 ∧ ¬ 𝑦 = 𝑠))
65 psseq1 4070 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
66 treq 5242 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (Tr 𝑧 ↔ Tr 𝑦))
6765, 66anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑦𝑠 ∧ Tr 𝑦)))
68 elequ1 2116 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
6967, 68imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠)))
7069spvv 1988 . . . . . . . . . . . . . . . 16 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠))
7170expd 415 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (𝑦𝑠 → (Tr 𝑦𝑦𝑠)))
7271com23 86 . . . . . . . . . . . . . 14 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠)))
7322, 72syl6 35 . . . . . . . . . . . . 13 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠))))
7473com3l 89 . . . . . . . . . . . 12 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7574adantld 490 . . . . . . . . . . 11 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7675adantl 481 . . . . . . . . . 10 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7776imp32 418 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦𝑠𝑦𝑠))
7864, 77biimtrrid 243 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ((𝑦𝑠 ∧ ¬ 𝑦 = 𝑠) → 𝑦𝑠))
7963, 78mpand 695 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (¬ 𝑦 = 𝑠𝑦𝑠))
8079orrd 863 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦 = 𝑠𝑦𝑠))
8180anassrs 467 . . . . 5 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) ∧ 𝑠 ∈ (𝑆𝑦)) → (𝑦 = 𝑠𝑦𝑠))
8281ralrimiva 3133 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
83 pssdif 4349 . . . . . . 7 (𝑦𝑆 → (𝑆𝑦) ≠ ∅)
84 r19.2z 4475 . . . . . . . 8 (((𝑆𝑦) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
8584ex 412 . . . . . . 7 ((𝑆𝑦) ≠ ∅ → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8683, 85syl 17 . . . . . 6 (𝑦𝑆 → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8786ad2antrl 728 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
88 eleq1w 2818 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦𝑆𝑠𝑆))
8915, 88imbitrrid 246 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆))
9089a1i 11 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
91 trel 5243 . . . . . . . . . . 11 (Tr 𝑆 → ((𝑦𝑠𝑠𝑆) → 𝑦𝑆))
9291expd 415 . . . . . . . . . 10 (Tr 𝑆 → (𝑦𝑠 → (𝑠𝑆𝑦𝑆)))
9315, 92syl7 74 . . . . . . . . 9 (Tr 𝑆 → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9493ad2antrr 726 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9590, 94jaod 859 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ((𝑦 = 𝑠𝑦𝑠) → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9695com23 86 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑠 ∈ (𝑆𝑦) → ((𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆)))
9796rexlimdv 3140 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9887, 97syld 47 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9982, 98mpd 15 . . 3 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → 𝑦𝑆)
10099ex 412 . 2 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
101100alrimiv 1927 1 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  wal 1538  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  wss 3931  wpss 3932  c0 4313  Tr wtr 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889  df-iun 4974  df-tr 5235  df-suc 6363
This theorem is referenced by:  dfon2lem7  35812  dfon2lem8  35813
  Copyright terms: Public domain W3C validator