Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem6 Structured version   Visualization version   GIF version

Theorem dfon2lem6 33021
Description: Lemma for dfon2 33025. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
dfon2lem6 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Distinct variable group:   𝑥,𝑆,𝑦,𝑧

Proof of Theorem dfon2lem6
Dummy variables 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 4070 . . . . . . . . . . . . . . . . 17 (𝑦𝑆𝑦𝑆)
2 ssralv 4031 . . . . . . . . . . . . . . . . 17 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
43impcom 410 . . . . . . . . . . . . . . 15 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑦𝑆) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
54adantrr 715 . . . . . . . . . . . . . 14 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
65ad2ant2lr 746 . . . . . . . . . . . . 13 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
7 psseq2 4063 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
87anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑤 ∧ Tr 𝑧)))
9 elequ2 2122 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
108, 9imbi12d 347 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1110albidv 1914 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1211rspccv 3618 . . . . . . . . . . . . 13 (∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
136, 12syl 17 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1413imp 409 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤))
15 eldifi 4101 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (𝑆𝑦) → 𝑠𝑆)
16 psseq2 4063 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1716anbi1d 631 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑠 ∧ Tr 𝑧)))
18 elequ2 2122 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1917, 18imbi12d 347 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2019albidv 1914 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2120rspcv 3616 . . . . . . . . . . . . . . . 16 (𝑠𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2215, 21syl 17 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
23 psseq1 4062 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
24 treq 5169 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (Tr 𝑧 ↔ Tr 𝑡))
2523, 24anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑡𝑠 ∧ Tr 𝑡)))
26 elequ1 2114 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
2725, 26imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
2827cbvalvw 2036 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
2922, 28syl6ib 253 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
3029impcom 410 . . . . . . . . . . . . 13 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑠 ∈ (𝑆𝑦)) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3130ad2ant2l 744 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3231adantr 483 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
33 vex 3496 . . . . . . . . . . . . 13 𝑤 ∈ V
34 vex 3496 . . . . . . . . . . . . 13 𝑠 ∈ V
3533, 34dfon2lem5 33020 . . . . . . . . . . . 12 ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → (𝑤𝑠𝑤 = 𝑠𝑠𝑤))
36 3orrot 1086 . . . . . . . . . . . . . 14 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠𝑠𝑤𝑤𝑠))
37 3orass 1084 . . . . . . . . . . . . . 14 ((𝑤 = 𝑠𝑠𝑤𝑤𝑠) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
3836, 37bitri 277 . . . . . . . . . . . . 13 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
39 eleq1a 2906 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑆𝑦) → (𝑤 = 𝑠𝑤 ∈ (𝑆𝑦)))
40 elndif 4103 . . . . . . . . . . . . . . . . . 18 (𝑤𝑦 → ¬ 𝑤 ∈ (𝑆𝑦))
4139, 40nsyli 160 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑤 = 𝑠))
4241imp 409 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ (𝑆𝑦) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4342adantll 712 . . . . . . . . . . . . . . 15 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4443adantll 712 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
45 orel1 884 . . . . . . . . . . . . . . 15 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → (𝑠𝑤𝑤𝑠)))
46 trss 5172 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
47 eldifn 4102 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (𝑆𝑦) → ¬ 𝑠𝑦)
48 ssel 3959 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤𝑦 → (𝑠𝑤𝑠𝑦))
4948con3d 155 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑦 → (¬ 𝑠𝑦 → ¬ 𝑠𝑤))
5047, 49syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤))
5146, 50syl9 77 . . . . . . . . . . . . . . . . . . 19 (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5251adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5352imp31 420 . . . . . . . . . . . . . . . . 17 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
5453adantll 712 . . . . . . . . . . . . . . . 16 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
55 orel1 884 . . . . . . . . . . . . . . . 16 𝑠𝑤 → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5654, 55syl 17 . . . . . . . . . . . . . . 15 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5745, 56syl9r 78 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → (¬ 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠)))
5844, 57mpd 15 . . . . . . . . . . . . 13 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠))
5938, 58syl5bi 244 . . . . . . . . . . . 12 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) → 𝑤𝑠))
6035, 59syl5 34 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → 𝑤𝑠))
6114, 32, 60mp2and 697 . . . . . . . . . 10 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → 𝑤𝑠)
6261ex 415 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦𝑤𝑠))
6362ssrdv 3971 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → 𝑦𝑠)
64 dfpss2 4060 . . . . . . . . 9 (𝑦𝑠 ↔ (𝑦𝑠 ∧ ¬ 𝑦 = 𝑠))
65 psseq1 4062 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
66 treq 5169 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (Tr 𝑧 ↔ Tr 𝑦))
6765, 66anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑦𝑠 ∧ Tr 𝑦)))
68 elequ1 2114 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
6967, 68imbi12d 347 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠)))
7069spvv 1996 . . . . . . . . . . . . . . . 16 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠))
7170expd 418 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (𝑦𝑠 → (Tr 𝑦𝑦𝑠)))
7271com23 86 . . . . . . . . . . . . . 14 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠)))
7322, 72syl6 35 . . . . . . . . . . . . 13 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠))))
7473com3l 89 . . . . . . . . . . . 12 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7574adantld 493 . . . . . . . . . . 11 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7675adantl 484 . . . . . . . . . 10 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7776imp32 421 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦𝑠𝑦𝑠))
7864, 77syl5bir 245 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ((𝑦𝑠 ∧ ¬ 𝑦 = 𝑠) → 𝑦𝑠))
7963, 78mpand 693 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (¬ 𝑦 = 𝑠𝑦𝑠))
8079orrd 859 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦 = 𝑠𝑦𝑠))
8180anassrs 470 . . . . 5 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) ∧ 𝑠 ∈ (𝑆𝑦)) → (𝑦 = 𝑠𝑦𝑠))
8281ralrimiva 3180 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
83 pssdif 4324 . . . . . . 7 (𝑦𝑆 → (𝑆𝑦) ≠ ∅)
84 r19.2z 4438 . . . . . . . 8 (((𝑆𝑦) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
8584ex 415 . . . . . . 7 ((𝑆𝑦) ≠ ∅ → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8683, 85syl 17 . . . . . 6 (𝑦𝑆 → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8786ad2antrl 726 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
88 eleq1w 2893 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦𝑆𝑠𝑆))
8915, 88syl5ibr 248 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆))
9089a1i 11 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
91 trel 5170 . . . . . . . . . . 11 (Tr 𝑆 → ((𝑦𝑠𝑠𝑆) → 𝑦𝑆))
9291expd 418 . . . . . . . . . 10 (Tr 𝑆 → (𝑦𝑠 → (𝑠𝑆𝑦𝑆)))
9315, 92syl7 74 . . . . . . . . 9 (Tr 𝑆 → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9493ad2antrr 724 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9590, 94jaod 855 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ((𝑦 = 𝑠𝑦𝑠) → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9695com23 86 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑠 ∈ (𝑆𝑦) → ((𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆)))
9796rexlimdv 3281 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9887, 97syld 47 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9982, 98mpd 15 . . 3 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → 𝑦𝑆)
10099ex 415 . 2 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
101100alrimiv 1921 1 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1080  wal 1528  wcel 2107  wne 3014  wral 3136  wrex 3137  cdif 3931  wss 3934  wpss 3935  c0 4289  Tr wtr 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-pw 4539  df-sn 4560  df-pr 4562  df-uni 4831  df-iun 4912  df-tr 5164  df-suc 6190
This theorem is referenced by:  dfon2lem7  33022  dfon2lem8  33023
  Copyright terms: Public domain W3C validator