Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq1d | Structured version Visualization version GIF version |
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
psseq1d | ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | psseq1 3978 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ⊊ wpss 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-in 3850 df-ss 3860 df-pss 3862 |
This theorem is referenced by: psseq12d 3985 fin23lem32 9846 fin23lem35 9849 compssiso 9876 mrieqv2d 17015 mrissmrcd 17016 pgpfac1lem5 19322 islbs3 20048 chpsscon2 29442 |
Copyright terms: Public domain | W3C validator |