MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1d Structured version   Visualization version   GIF version

Theorem psseq1d 4087
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
psseq1d (𝜑 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1d
StepHypRef Expression
1 psseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 psseq1 4082 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wpss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-v 3470  df-in 3950  df-ss 3960  df-pss 3962
This theorem is referenced by:  psseq12d  4089  fin23lem32  10341  fin23lem35  10344  compssiso  10371  mrieqv2d  17592  mrissmrcd  17593  pgpfac1lem5  20001  islbs3  21006  chpsscon2  31267
  Copyright terms: Public domain W3C validator