![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq1d | Structured version Visualization version GIF version |
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
psseq1d | ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | psseq1 4113 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 df-ss 3993 df-pss 3996 |
This theorem is referenced by: psseq12d 4120 fin23lem32 10413 fin23lem35 10416 compssiso 10443 mrieqv2d 17697 mrissmrcd 17698 pgpfac1lem5 20123 islbs3 21180 chpsscon2 31537 |
Copyright terms: Public domain | W3C validator |