MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1d Structured version   Visualization version   GIF version

Theorem psseq1d 4105
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
psseq1d (𝜑 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1d
StepHypRef Expression
1 psseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 psseq1 4100 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wpss 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ne 2939  df-ss 3980  df-pss 3983
This theorem is referenced by:  psseq12d  4107  fin23lem32  10382  fin23lem35  10385  compssiso  10412  mrieqv2d  17684  mrissmrcd  17685  pgpfac1lem5  20114  islbs3  21175  chpsscon2  31534
  Copyright terms: Public domain W3C validator