Proof of Theorem canthp1lem2
Step | Hyp | Ref
| Expression |
1 | | canthp1lem2.1 |
. . . . . 6
⊢ (𝜑 → 1o ≺
𝐴) |
2 | | relsdom 8749 |
. . . . . . 7
⊢ Rel
≺ |
3 | 2 | brrelex2i 5645 |
. . . . . 6
⊢
(1o ≺ 𝐴 → 𝐴 ∈ V) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
5 | 4 | pwexd 5303 |
. . . 4
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
6 | | canthp1lem2.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) |
7 | | f1oeng 8768 |
. . . 4
⊢
((𝒫 𝐴 ∈
V ∧ 𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) → 𝒫
𝐴 ≈ (𝐴 ⊔
1o)) |
8 | 5, 6, 7 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o)) |
9 | 8 | ensymd 8800 |
. 2
⊢ (𝜑 → (𝐴 ⊔ 1o) ≈ 𝒫
𝐴) |
10 | | canth2g 8927 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) |
11 | 4, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≺ 𝒫 𝐴) |
12 | | sdomen2 8918 |
. . . . . . . . . . 11
⊢
(𝒫 𝐴 ≈
(𝐴 ⊔ 1o)
→ (𝐴 ≺ 𝒫
𝐴 ↔ 𝐴 ≺ (𝐴 ⊔ 1o))) |
13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ (𝐴 ⊔ 1o))) |
14 | 11, 13 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≺ (𝐴 ⊔ 1o)) |
15 | | sdomnen 8778 |
. . . . . . . . 9
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o)) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o)) |
17 | | omelon 9413 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
18 | | onenon 9716 |
. . . . . . . . . . . 12
⊢ (ω
∈ On → ω ∈ dom card) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ω
∈ dom card |
20 | | canthp1lem2.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴) |
21 | | dff1o3 6731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) ↔ (𝐹:𝒫 𝐴–onto→(𝐴 ⊔ 1o) ∧ Fun ◡𝐹)) |
22 | 21 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) → Fun ◡𝐹) |
23 | 6, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → Fun ◡𝐹) |
24 | | f1ofo 6732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) → 𝐹:𝒫 𝐴–onto→(𝐴 ⊔ 1o)) |
25 | 6, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:𝒫 𝐴–onto→(𝐴 ⊔ 1o)) |
26 | | f1ofn 6726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) → 𝐹 Fn 𝒫 𝐴) |
27 | | fnresdm 6560 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹) |
28 | | foeq1 6693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴–onto→(𝐴 ⊔ 1o))) |
29 | 6, 26, 27, 28 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴–onto→(𝐴 ⊔ 1o))) |
30 | 25, 29 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 ⊔ 1o)) |
31 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹‘𝐴) ∈ V |
32 | | f1osng 6766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ V ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
33 | 4, 31, 32 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
34 | 6, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) |
35 | | pwidg 4556 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) |
36 | 4, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐴) |
37 | | fnressn 7039 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) |
38 | 34, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) |
39 | 38 | f1oeq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)} ↔ {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)})) |
40 | 33, 39 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
41 | | f1ofo 6732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) |
43 | | resdif 6746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 ⊔ 1o) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})) |
44 | 23, 30, 42, 43 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})) |
45 | | f1oco 6748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
46 | 20, 44, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
47 | | resco 6158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) |
48 | | f1oeq1 6713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴)) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
50 | 46, 49 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
51 | | f1of 6725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴) |
53 | | 0elpw 5279 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
∈ 𝒫 𝐴 |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴) |
55 | | sdom0 8904 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
1o ≺ ∅ |
56 | | breq2 5079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∅
= 𝐴 → (1o
≺ ∅ ↔ 1o ≺ 𝐴)) |
57 | 55, 56 | mtbii 326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
= 𝐴 → ¬
1o ≺ 𝐴) |
58 | 57 | necon2ai 2974 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1o ≺ 𝐴 → ∅ ≠ 𝐴) |
59 | 1, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∅ ≠ 𝐴) |
60 | 59 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴) |
61 | | eldifsn 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ (𝒫 𝐴 ∖
{𝐴}) ↔ (∅ ∈
𝒫 𝐴 ∧ ∅
≠ 𝐴)) |
62 | 54, 60, 61 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴})) |
63 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
64 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴) |
65 | 64 | neqned 2951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
66 | | eldifsn 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ 𝐴)) |
67 | 63, 65, 66 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴})) |
68 | 62, 67 | ifclda 4495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴})) |
69 | 68 | fmpttd 6998 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) |
70 | 52, 69 | fcod 6635 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴⟶𝐴) |
71 | 69 | frnd 6617 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴})) |
72 | | cores 6157 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ran
(𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))) |
74 | | canthp1lem2.4 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) |
75 | 73, 74 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻) |
76 | 75 | feq1d 6594 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴⟶𝐴 ↔ 𝐻:𝒫 𝐴⟶𝐴)) |
77 | 70, 76 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻:𝒫 𝐴⟶𝐴) |
78 | | inss1 4163 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 𝐴 ∩
dom card) ⊆ 𝒫 𝐴 |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆
𝒫 𝐴) |
80 | | canthp1lem2.5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐻‘(◡𝑟 “ {𝑦})) = 𝑦))} |
81 | | canthp1lem2.6 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = ∪
dom 𝑊 |
82 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) |
83 | 80, 81, 82 | canth4 10412 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵 ⊆ 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵 ∧ (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
84 | 4, 77, 79, 83 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 ⊆ 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵 ∧ (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
85 | 84 | simp1d 1141 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
86 | 84 | simp2d 1142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵) |
87 | 86 | pssned 4034 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐵) |
88 | 87 | necomd 3000 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ≠ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
89 | 84 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
90 | 74 | fveq1i 6784 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻‘𝐵) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) |
91 | 74 | fveq1i 6784 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
92 | 89, 90, 91 | 3eqtr3g 2802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
93 | 4, 85 | sselpwd 5251 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
94 | 69, 93 | fvco3d 6877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵))) |
95 | 86 | pssssd 4033 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐵) |
96 | 95, 85 | sstrd 3932 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐴) |
97 | 4, 96 | sselpwd 5251 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) |
98 | 69, 97 | fvco3d 6877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
99 | 92, 94, 98 | 3eqtr3d 2787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
100 | 99 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
101 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) |
102 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝐵 → (𝑥 = 𝐴 ↔ 𝐵 = 𝐴)) |
103 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
104 | 102, 103 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵)) |
105 | | ifcl 4505 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((∅
∈ 𝒫 𝐴 ∧
𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) |
106 | 53, 93, 105 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) |
107 | 101, 104,
93, 106 | fvmptd3 6907 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵)) |
108 | | pssne 4032 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ≠ 𝐴) |
109 | 108 | neneqd 2949 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐵 = 𝐴) |
110 | 109 | iffalsed 4471 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ⊊ 𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵) |
111 | 107, 110 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵) |
112 | 111 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘𝐵)) |
113 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → (𝑥 = 𝐴 ↔ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴)) |
114 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → 𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
115 | 113, 114 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
116 | | ifcl 4505 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((∅
∈ 𝒫 𝐴 ∧
(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ∈ 𝒫 𝐴) |
117 | 53, 97, 116 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ∈ 𝒫 𝐴) |
118 | 101, 115,
97, 117 | fvmptd3 6907 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
120 | | sspsstr 4041 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐴) |
121 | 95, 120 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐴) |
122 | 121 | pssned 4034 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐴) |
123 | 122 | neneqd 2949 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ¬ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴) |
124 | 123 | iffalsed 4471 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
125 | 119, 124 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
126 | 125 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
127 | 100, 112,
126 | 3eqtr3d 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘𝐵) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
128 | 93, 108 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴)) |
129 | | eldifsn 4721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴)) |
130 | 128, 129 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴})) |
131 | 130 | fvresd 6803 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺 ∘ 𝐹)‘𝐵)) |
132 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) |
133 | | eldifsn 4721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐴)) |
134 | 132, 122,
133 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴})) |
135 | 134 | fvresd 6803 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
136 | 127, 131,
135 | 3eqtr4d 2789 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
137 | | f1of1 6724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
138 | 50, 137 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
139 | 138 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
140 | | f1fveq 7144 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ↔ 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
141 | 139, 130,
134, 140 | syl12anc 834 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ↔ 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
142 | 136, 141 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
143 | 142 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 ⊊ 𝐴 → 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
144 | 143 | necon3ad 2957 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 ≠ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → ¬ 𝐵 ⊊ 𝐴)) |
145 | 88, 144 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝐵 ⊊ 𝐴) |
146 | | npss 4046 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 → 𝐵 = 𝐴)) |
147 | 145, 146 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 ⊆ 𝐴 → 𝐵 = 𝐴)) |
148 | 85, 147 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = 𝐴) |
149 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 = 𝐵 |
150 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊‘𝐵) = (𝑊‘𝐵) |
151 | 149, 150 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)) |
152 | | elinel1 4130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴) |
153 | | ffvelrn 6968 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻:𝒫 𝐴⟶𝐴 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝐻‘𝑥) ∈ 𝐴) |
154 | 77, 152, 153 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻‘𝑥) ∈ 𝐴) |
155 | 80, 4, 154, 81 | fpwwe 10411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐵𝑊(𝑊‘𝐵) ∧ (𝐻‘𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)))) |
156 | 151, 155 | mpbiri 257 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵𝑊(𝑊‘𝐵) ∧ (𝐻‘𝐵) ∈ 𝐵)) |
157 | 156 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵𝑊(𝑊‘𝐵)) |
158 | 80, 4 | fpwwelem 10410 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵𝑊(𝑊‘𝐵) ↔ ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐻‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦)))) |
159 | 157, 158 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐻‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦))) |
160 | 159 | simprld 769 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊‘𝐵) We 𝐵) |
161 | | fvex 6796 |
. . . . . . . . . . . . . . 15
⊢ (𝑊‘𝐵) ∈ V |
162 | | weeq1 5578 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑊‘𝐵) → (𝑟 We 𝐵 ↔ (𝑊‘𝐵) We 𝐵)) |
163 | 161, 162 | spcev 3546 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵) |
164 | 160, 163 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑟 𝑟 We 𝐵) |
165 | | ween 9800 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ dom card ↔
∃𝑟 𝑟 We 𝐵) |
166 | 164, 165 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom card) |
167 | 148, 166 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ dom card) |
168 | | domtri2 9756 |
. . . . . . . . . . 11
⊢ ((ω
∈ dom card ∧ 𝐴
∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) |
169 | 19, 167, 168 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) |
170 | | infdju1 9954 |
. . . . . . . . . 10
⊢ (ω
≼ 𝐴 → (𝐴 ⊔ 1o) ≈
𝐴) |
171 | 169, 170 | syl6bir 253 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 ⊔ 1o) ≈ 𝐴)) |
172 | | ensym 8798 |
. . . . . . . . 9
⊢ ((𝐴 ⊔ 1o) ≈
𝐴 → 𝐴 ≈ (𝐴 ⊔ 1o)) |
173 | 171, 172 | syl6 35 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 ⊔ 1o))) |
174 | 16, 173 | mt3d 148 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≺ ω) |
175 | | 2onn 8481 |
. . . . . . . 8
⊢
2o ∈ ω |
176 | | nnsdom 9421 |
. . . . . . . 8
⊢
(2o ∈ ω → 2o ≺
ω) |
177 | 175, 176 | ax-mp 5 |
. . . . . . 7
⊢
2o ≺ ω |
178 | | djufi 9951 |
. . . . . . 7
⊢ ((𝐴 ≺ ω ∧
2o ≺ ω) → (𝐴 ⊔ 2o) ≺
ω) |
179 | 174, 177,
178 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊔ 2o) ≺
ω) |
180 | | isfinite 9419 |
. . . . . 6
⊢ ((𝐴 ⊔ 2o) ∈
Fin ↔ (𝐴 ⊔
2o) ≺ ω) |
181 | 179, 180 | sylibr 233 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊔ 2o) ∈
Fin) |
182 | | sssucid 6347 |
. . . . . . . . . 10
⊢
1o ⊆ suc 1o |
183 | | df-2o 8307 |
. . . . . . . . . 10
⊢
2o = suc 1o |
184 | 182, 183 | sseqtrri 3959 |
. . . . . . . . 9
⊢
1o ⊆ 2o |
185 | | xpss2 5610 |
. . . . . . . . 9
⊢
(1o ⊆ 2o → ({1o} ×
1o) ⊆ ({1o} ×
2o)) |
186 | 184, 185 | ax-mp 5 |
. . . . . . . 8
⊢
({1o} × 1o) ⊆ ({1o} ×
2o) |
187 | | unss2 4116 |
. . . . . . . 8
⊢
(({1o} × 1o) ⊆ ({1o}
× 2o) → (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} ×
2o))) |
188 | 186, 187 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} ×
2o))) |
189 | | ssun2 4108 |
. . . . . . . . 9
⊢
({1o} × 2o) ⊆ (({∅} ×
𝐴) ∪ ({1o}
× 2o)) |
190 | | 1oex 8316 |
. . . . . . . . . . 11
⊢
1o ∈ V |
191 | 190 | snid 4598 |
. . . . . . . . . 10
⊢
1o ∈ {1o} |
192 | 190 | sucid 6349 |
. . . . . . . . . . 11
⊢
1o ∈ suc 1o |
193 | 192, 183 | eleqtrri 2839 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
194 | | opelxpi 5627 |
. . . . . . . . . 10
⊢
((1o ∈ {1o} ∧ 1o ∈
2o) → 〈1o, 1o〉 ∈
({1o} × 2o)) |
195 | 191, 193,
194 | mp2an 689 |
. . . . . . . . 9
⊢
〈1o, 1o〉 ∈ ({1o} ×
2o) |
196 | 189, 195 | sselii 3919 |
. . . . . . . 8
⊢
〈1o, 1o〉 ∈ (({∅} ×
𝐴) ∪ ({1o}
× 2o)) |
197 | | 1n0 8327 |
. . . . . . . . . . . 12
⊢
1o ≠ ∅ |
198 | 197 | neii 2946 |
. . . . . . . . . . 11
⊢ ¬
1o = ∅ |
199 | | opelxp1 5631 |
. . . . . . . . . . . 12
⊢
(〈1o, 1o〉 ∈ ({∅} ×
𝐴) → 1o
∈ {∅}) |
200 | | elsni 4579 |
. . . . . . . . . . . 12
⊢
(1o ∈ {∅} → 1o =
∅) |
201 | 199, 200 | syl 17 |
. . . . . . . . . . 11
⊢
(〈1o, 1o〉 ∈ ({∅} ×
𝐴) → 1o =
∅) |
202 | 198, 201 | mto 196 |
. . . . . . . . . 10
⊢ ¬
〈1o, 1o〉 ∈ ({∅} × 𝐴) |
203 | | 1onn 8479 |
. . . . . . . . . . . 12
⊢
1o ∈ ω |
204 | | nnord 7729 |
. . . . . . . . . . . 12
⊢
(1o ∈ ω → Ord 1o) |
205 | | ordirr 6288 |
. . . . . . . . . . . 12
⊢ (Ord
1o → ¬ 1o ∈ 1o) |
206 | 203, 204,
205 | mp2b 10 |
. . . . . . . . . . 11
⊢ ¬
1o ∈ 1o |
207 | | opelxp2 5632 |
. . . . . . . . . . 11
⊢
(〈1o, 1o〉 ∈ ({1o}
× 1o) → 1o ∈
1o) |
208 | 206, 207 | mto 196 |
. . . . . . . . . 10
⊢ ¬
〈1o, 1o〉 ∈ ({1o} ×
1o) |
209 | 202, 208 | pm3.2ni 878 |
. . . . . . . . 9
⊢ ¬
(〈1o, 1o〉 ∈ ({∅} × 𝐴) ∨ 〈1o,
1o〉 ∈ ({1o} ×
1o)) |
210 | | elun 4084 |
. . . . . . . . 9
⊢
(〈1o, 1o〉 ∈ (({∅} ×
𝐴) ∪ ({1o}
× 1o)) ↔ (〈1o, 1o〉 ∈
({∅} × 𝐴) ∨
〈1o, 1o〉 ∈ ({1o} ×
1o))) |
211 | 209, 210 | mtbir 323 |
. . . . . . . 8
⊢ ¬
〈1o, 1o〉 ∈ (({∅} × 𝐴) ∪ ({1o} ×
1o)) |
212 | | ssnelpss 4047 |
. . . . . . . 8
⊢
((({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} ×
2o)) → ((〈1o, 1o〉 ∈
(({∅} × 𝐴)
∪ ({1o} × 2o)) ∧ ¬ 〈1o,
1o〉 ∈ (({∅} × 𝐴) ∪ ({1o} ×
1o))) → (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} ×
2o)))) |
213 | 196, 211,
212 | mp2ani 695 |
. . . . . . 7
⊢
((({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} ×
2o)) → (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} ×
2o))) |
214 | 188, 213 | syl 17 |
. . . . . 6
⊢ (𝜑 → (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} ×
2o))) |
215 | | df-dju 9668 |
. . . . . . 7
⊢ (𝐴 ⊔ 1o) =
(({∅} × 𝐴)
∪ ({1o} × 1o)) |
216 | | df-dju 9668 |
. . . . . . 7
⊢ (𝐴 ⊔ 2o) =
(({∅} × 𝐴)
∪ ({1o} × 2o)) |
217 | 215, 216 | psseq12i 4027 |
. . . . . 6
⊢ ((𝐴 ⊔ 1o)
⊊ (𝐴 ⊔
2o) ↔ (({∅} × 𝐴) ∪ ({1o} ×
1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} ×
2o))) |
218 | 214, 217 | sylibr 233 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔
2o)) |
219 | | php3 9004 |
. . . . 5
⊢ (((𝐴 ⊔ 2o) ∈
Fin ∧ (𝐴 ⊔
1o) ⊊ (𝐴
⊔ 2o)) → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔
2o)) |
220 | 181, 218,
219 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔
2o)) |
221 | | canthp1lem1 10417 |
. . . . 5
⊢
(1o ≺ 𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫
𝐴) |
222 | 1, 221 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ⊔ 2o) ≼ 𝒫
𝐴) |
223 | | sdomdomtr 8906 |
. . . 4
⊢ (((𝐴 ⊔ 1o) ≺
(𝐴 ⊔ 2o)
∧ (𝐴 ⊔
2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≺ 𝒫
𝐴) |
224 | 220, 222,
223 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴 ⊔ 1o) ≺ 𝒫
𝐴) |
225 | | sdomnen 8778 |
. . 3
⊢ ((𝐴 ⊔ 1o) ≺
𝒫 𝐴 → ¬
(𝐴 ⊔ 1o)
≈ 𝒫 𝐴) |
226 | 224, 225 | syl 17 |
. 2
⊢ (𝜑 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫
𝐴) |
227 | 9, 226 | pm2.65i 193 |
1
⊢ ¬
𝜑 |