MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 10696
Description: Lemma for canthp1 10697. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1o𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
canthp1lem2.3 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1o𝐴)
2 relsdom 8981 . . . . . . 7 Rel ≺
32brrelex2i 5739 . . . . . 6 (1o𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
54pwexd 5383 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
6 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
7 f1oeng 9002 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
85, 6, 7syl2anc 582 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
98ensymd 9036 . 2 (𝜑 → (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
10 canth2g 9169 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
114, 10syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
12 sdomen2 9160 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
138, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
1411, 13mpbid 231 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 ⊔ 1o))
15 sdomnen 9012 . . . . . . . . 9 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
1614, 15syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
17 omelon 9689 . . . . . . . . . . . 12 ω ∈ On
18 onenon 9992 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
1917, 18ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
20 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
21 dff1o3 6849 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) ↔ (𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ Fun 𝐹))
2221simprbi 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → Fun 𝐹)
236, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
24 f1ofo 6850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
256, 24syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
26 f1ofn 6844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹 Fn 𝒫 𝐴)
27 fnresdm 6680 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
28 foeq1 6811 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
296, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
3025, 29mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o))
31 fvex 6914 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
32 f1osng 6884 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
334, 31, 32sylancl 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
346, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
35 pwidg 4627 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
364, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
37 fnressn 7172 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3834, 36, 37syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3938f1oeq1d 6838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4033, 39mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
41 f1ofo 6850 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
43 resdif 6864 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
4423, 30, 42, 43syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
45 f1oco 6866 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4620, 44, 45syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
47 resco 6261 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
48 f1oeq1 6831 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5046, 49sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
51 f1of 6843 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
53 0elpw 5360 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
55 sdom0 9146 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1o ≺ ∅
56 breq2 5157 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1o ≺ ∅ ↔ 1o𝐴))
5755, 56mtbii 325 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1o𝐴)
5857necon2ai 2960 . . . . . . . . . . . . . . . . . . . . . 22 (1o𝐴 → ∅ ≠ 𝐴)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6059ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
61 eldifsn 4795 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6254, 60, 61sylanbrc 581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
63 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
64 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6564neqned 2937 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
66 eldifsn 4795 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
6763, 65, 66sylanbrc 581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
6862, 67ifclda 4568 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
6968fmpttd 7129 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
7052, 69fcod 6754 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7169frnd 6736 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
72 cores 6260 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7371, 72syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
74 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
7573, 74eqtr4di 2784 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
7675feq1d 6713 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
7770, 76mpbid 231 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
78 inss1 4230 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
7978a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
80 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
81 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
82 eqid 2726 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8380, 81, 82canth4 10690 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
844, 77, 79, 83syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
8584simp1d 1139 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
8684simp2d 1140 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
8786pssned 4097 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
8887necomd 2986 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
8984simp3d 1141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9074fveq1i 6902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9174fveq1i 6902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9289, 90, 913eqtr3g 2789 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
934, 85sselpwd 5333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
9469, 93fvco3d 7002 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
9586pssssd 4096 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
9695, 85sstrd 3990 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
974, 96sselpwd 5333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
9869, 97fvco3d 7002 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9992, 94, 983eqtr3d 2774 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
10099adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
101 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
102 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
103 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵𝑥 = 𝐵)
104102, 103ifbieq2d 4559 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
105 ifcl 4578 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
10653, 93, 105sylancr 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
107101, 104, 93, 106fvmptd3 7032 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
108 pssne 4095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
109108neneqd 2935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
110109iffalsed 4544 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
111107, 110sylan9eq 2786 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
112111fveq2d 6905 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
113 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
115113, 114ifbieq2d 4559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
116 ifcl 4578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
11753, 97, 116sylancr 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
118101, 115, 97, 117fvmptd3 7032 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
119118adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
120 sspsstr 4104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
12195, 120sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
122121pssned 4097 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
123122neneqd 2935 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
124123iffalsed 4544 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
125119, 124eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
126125fveq2d 6905 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
127100, 112, 1263eqtr3d 2774 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
12893, 108anim12i 611 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
129 eldifsn 4795 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
130128, 129sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
131130fvresd 6921 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
13297adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
133 eldifsn 4795 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
134132, 122, 133sylanbrc 581 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
135134fvresd 6921 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
136127, 131, 1353eqtr4d 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
137 f1of1 6842 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
13850, 137syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
139138adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
140 f1fveq 7277 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
141139, 130, 134, 140syl12anc 835 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
142136, 141mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
143142ex 411 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
144143necon3ad 2943 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
14588, 144mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
146 npss 4109 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
147145, 146sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
14885, 147mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
149 eqid 2726 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵
150 eqid 2726 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐵) = (𝑊𝐵)
151149, 150pm3.2i 469 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
152 elinel1 4196 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
153 ffvelcdm 7095 . . . . . . . . . . . . . . . . . . . 20 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
15477, 152, 153syl2an 594 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
15580, 4, 154, 81fpwwe 10689 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
156151, 155mpbiri 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
157156simpld 493 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊(𝑊𝐵))
15880, 4fpwwelem 10688 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
159157, 158mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
160159simprld 770 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
161 fvex 6914 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
162 weeq1 5670 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
163161, 162spcev 3592 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
164160, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
165 ween 10078 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
166164, 165sylibr 233 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
167148, 166eqeltrrd 2827 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
168 domtri2 10032 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
16919, 167, 168sylancr 585 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
170 infdju1 10232 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
171169, 170biimtrrdi 253 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 ⊔ 1o) ≈ 𝐴))
172 ensym 9034 . . . . . . . . 9 ((𝐴 ⊔ 1o) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
173171, 172syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 ⊔ 1o)))
17416, 173mt3d 148 . . . . . . 7 (𝜑𝐴 ≺ ω)
175 2onn 8672 . . . . . . . 8 2o ∈ ω
176 nnsdom 9697 . . . . . . . 8 (2o ∈ ω → 2o ≺ ω)
177175, 176ax-mp 5 . . . . . . 7 2o ≺ ω
178 djufi 10229 . . . . . . 7 ((𝐴 ≺ ω ∧ 2o ≺ ω) → (𝐴 ⊔ 2o) ≺ ω)
179174, 177, 178sylancl 584 . . . . . 6 (𝜑 → (𝐴 ⊔ 2o) ≺ ω)
180 isfinite 9695 . . . . . 6 ((𝐴 ⊔ 2o) ∈ Fin ↔ (𝐴 ⊔ 2o) ≺ ω)
181179, 180sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 2o) ∈ Fin)
182 sssucid 6456 . . . . . . . . . 10 1o ⊆ suc 1o
183 df-2o 8497 . . . . . . . . . 10 2o = suc 1o
184182, 183sseqtrri 4017 . . . . . . . . 9 1o ⊆ 2o
185 xpss2 5702 . . . . . . . . 9 (1o ⊆ 2o → ({1o} × 1o) ⊆ ({1o} × 2o))
186184, 185ax-mp 5 . . . . . . . 8 ({1o} × 1o) ⊆ ({1o} × 2o)
187 unss2 4182 . . . . . . . 8 (({1o} × 1o) ⊆ ({1o} × 2o) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
188186, 187mp1i 13 . . . . . . 7 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
189 ssun2 4174 . . . . . . . . 9 ({1o} × 2o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o))
190 1oex 8506 . . . . . . . . . . 11 1o ∈ V
191190snid 4669 . . . . . . . . . 10 1o ∈ {1o}
192190sucid 6458 . . . . . . . . . . 11 1o ∈ suc 1o
193192, 183eleqtrri 2825 . . . . . . . . . 10 1o ∈ 2o
194 opelxpi 5719 . . . . . . . . . 10 ((1o ∈ {1o} ∧ 1o ∈ 2o) → ⟨1o, 1o⟩ ∈ ({1o} × 2o))
195191, 193, 194mp2an 690 . . . . . . . . 9 ⟨1o, 1o⟩ ∈ ({1o} × 2o)
196189, 195sselii 3976 . . . . . . . 8 ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o))
197 1n0 8518 . . . . . . . . . . . 12 1o ≠ ∅
198197neii 2932 . . . . . . . . . . 11 ¬ 1o = ∅
199 opelxp1 5724 . . . . . . . . . . . 12 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
200 elsni 4650 . . . . . . . . . . . 12 (1o ∈ {∅} → 1o = ∅)
201199, 200syl 17 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
202198, 201mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({∅} × 𝐴)
203 1onn 8670 . . . . . . . . . . . 12 1o ∈ ω
204 nnord 7884 . . . . . . . . . . . 12 (1o ∈ ω → Ord 1o)
205 ordirr 6394 . . . . . . . . . . . 12 (Ord 1o → ¬ 1o ∈ 1o)
206203, 204, 205mp2b 10 . . . . . . . . . . 11 ¬ 1o ∈ 1o
207 opelxp2 5725 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({1o} × 1o) → 1o ∈ 1o)
208206, 207mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({1o} × 1o)
209202, 208pm3.2ni 878 . . . . . . . . 9 ¬ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o))
210 elun 4148 . . . . . . . . 9 (⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o)))
211209, 210mtbir 322 . . . . . . . 8 ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
212 ssnelpss 4110 . . . . . . . 8 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → ((⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o)) ∧ ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o))))
213196, 211, 212mp2ani 696 . . . . . . 7 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
214188, 213syl 17 . . . . . 6 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
215 df-dju 9944 . . . . . . 7 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
216 df-dju 9944 . . . . . . 7 (𝐴 ⊔ 2o) = (({∅} × 𝐴) ∪ ({1o} × 2o))
217215, 216psseq12i 4090 . . . . . 6 ((𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o) ↔ (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
218214, 217sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o))
219 php3 9246 . . . . 5 (((𝐴 ⊔ 2o) ∈ Fin ∧ (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o)) → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
220181, 218, 219syl2anc 582 . . . 4 (𝜑 → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
221 canthp1lem1 10695 . . . . 5 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
2221, 221syl 17 . . . 4 (𝜑 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
223 sdomdomtr 9148 . . . 4 (((𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
224220, 222, 223syl2anc 582 . . 3 (𝜑 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
225 sdomnen 9012 . . 3 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
226224, 225syl 17 . 2 (𝜑 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2279, 226pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cdif 3944  cun 3945  cin 3946  wss 3947  wpss 3948  c0 4325  ifcif 4533  𝒫 cpw 4607  {csn 4633  cop 4639   cuni 4913   class class class wbr 5153  {copab 5215  cmpt 5236   We wwe 5636   × cxp 5680  ccnv 5681  dom cdm 5682  ran crn 5683  cres 5684  cima 5685  ccom 5686  Ord word 6375  Oncon0 6376  suc csuc 6378  Fun wfun 6548   Fn wfn 6549  wf 6550  1-1wf1 6551  ontowfo 6552  1-1-ontowf1o 6553  cfv 6554  ωcom 7876  1oc1o 8489  2oc2o 8490  cen 8971  cdom 8972  csdm 8973  Fincfn 8974  cdju 9941  cardccrd 9978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-oi 9553  df-dju 9944  df-card 9982
This theorem is referenced by:  canthp1  10697
  Copyright terms: Public domain W3C validator