MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 10694
Description: Lemma for canthp1 10695. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1o𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
canthp1lem2.3 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1o𝐴)
2 relsdom 8993 . . . . . . 7 Rel ≺
32brrelex2i 5741 . . . . . 6 (1o𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
54pwexd 5378 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
6 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
7 f1oeng 9012 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
85, 6, 7syl2anc 584 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
98ensymd 9046 . 2 (𝜑 → (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
10 canth2g 9172 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
114, 10syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
12 sdomen2 9163 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
138, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
1411, 13mpbid 232 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 ⊔ 1o))
15 sdomnen 9022 . . . . . . . . 9 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
1614, 15syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
17 omelon 9687 . . . . . . . . . . . 12 ω ∈ On
18 onenon 9990 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
1917, 18ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
20 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
21 dff1o3 6853 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) ↔ (𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ Fun 𝐹))
2221simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → Fun 𝐹)
236, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
24 f1ofo 6854 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
256, 24syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
26 f1ofn 6848 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹 Fn 𝒫 𝐴)
27 fnresdm 6686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
28 foeq1 6815 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
296, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
3025, 29mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o))
31 fvex 6918 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
32 f1osng 6888 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
334, 31, 32sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
346, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
35 pwidg 4619 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
364, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
37 fnressn 7177 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3834, 36, 37syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3938f1oeq1d 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4033, 39mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
41 f1ofo 6854 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
43 resdif 6868 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
4423, 30, 42, 43syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
45 f1oco 6870 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4620, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
47 resco 6269 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
48 f1oeq1 6835 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5046, 49sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
51 f1of 6847 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
53 0elpw 5355 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
55 sdom0 9149 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1o ≺ ∅
56 breq2 5146 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1o ≺ ∅ ↔ 1o𝐴))
5755, 56mtbii 326 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1o𝐴)
5857necon2ai 2969 . . . . . . . . . . . . . . . . . . . . . 22 (1o𝐴 → ∅ ≠ 𝐴)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6059ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
61 eldifsn 4785 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6254, 60, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
63 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
64 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6564neqned 2946 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
66 eldifsn 4785 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
6763, 65, 66sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
6862, 67ifclda 4560 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
6968fmpttd 7134 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
7052, 69fcod 6760 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7169frnd 6743 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
72 cores 6268 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7371, 72syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
74 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
7573, 74eqtr4di 2794 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
7675feq1d 6719 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
7770, 76mpbid 232 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
78 inss1 4236 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
7978a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
80 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
81 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
82 eqid 2736 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8380, 81, 82canth4 10688 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
844, 77, 79, 83syl3anc 1372 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
8584simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
8684simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
8786pssned 4100 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
8887necomd 2995 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
8984simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9074fveq1i 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9174fveq1i 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9289, 90, 913eqtr3g 2799 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
934, 85sselpwd 5327 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
9469, 93fvco3d 7008 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
9586pssssd 4099 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
9695, 85sstrd 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
974, 96sselpwd 5327 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
9869, 97fvco3d 7008 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9992, 94, 983eqtr3d 2784 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
10099adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
101 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
102 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
103 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵𝑥 = 𝐵)
104102, 103ifbieq2d 4551 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
105 ifcl 4570 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
10653, 93, 105sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
107101, 104, 93, 106fvmptd3 7038 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
108 pssne 4098 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
109108neneqd 2944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
110109iffalsed 4535 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
111107, 110sylan9eq 2796 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
112111fveq2d 6909 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
113 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
115113, 114ifbieq2d 4551 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
116 ifcl 4570 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
11753, 97, 116sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
118101, 115, 97, 117fvmptd3 7038 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
119118adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
120 sspsstr 4107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
12195, 120sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
122121pssned 4100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
123122neneqd 2944 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
124123iffalsed 4535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
125119, 124eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
126125fveq2d 6909 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
127100, 112, 1263eqtr3d 2784 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
12893, 108anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
129 eldifsn 4785 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
130128, 129sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
131130fvresd 6925 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
13297adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
133 eldifsn 4785 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
134132, 122, 133sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
135134fvresd 6925 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
136127, 131, 1353eqtr4d 2786 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
137 f1of1 6846 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
13850, 137syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
140 f1fveq 7283 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
141139, 130, 134, 140syl12anc 836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
142136, 141mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
143142ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
144143necon3ad 2952 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
14588, 144mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
146 npss 4112 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
147145, 146sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
14885, 147mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
149 eqid 2736 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵
150 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐵) = (𝑊𝐵)
151149, 150pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
152 elinel1 4200 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
153 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . 20 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
15477, 152, 153syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
15580, 4, 154, 81fpwwe 10687 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
156151, 155mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
157156simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊(𝑊𝐵))
15880, 4fpwwelem 10686 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
159157, 158mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
160159simprld 771 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
161 fvex 6918 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
162 weeq1 5671 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
163161, 162spcev 3605 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
164160, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
165 ween 10076 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
166164, 165sylibr 234 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
167148, 166eqeltrrd 2841 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
168 domtri2 10030 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
16919, 167, 168sylancr 587 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
170 infdju1 10231 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
171169, 170biimtrrdi 254 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 ⊔ 1o) ≈ 𝐴))
172 ensym 9044 . . . . . . . . 9 ((𝐴 ⊔ 1o) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
173171, 172syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 ⊔ 1o)))
17416, 173mt3d 148 . . . . . . 7 (𝜑𝐴 ≺ ω)
175 2onn 8681 . . . . . . . 8 2o ∈ ω
176 nnsdom 9695 . . . . . . . 8 (2o ∈ ω → 2o ≺ ω)
177175, 176ax-mp 5 . . . . . . 7 2o ≺ ω
178 djufi 10228 . . . . . . 7 ((𝐴 ≺ ω ∧ 2o ≺ ω) → (𝐴 ⊔ 2o) ≺ ω)
179174, 177, 178sylancl 586 . . . . . 6 (𝜑 → (𝐴 ⊔ 2o) ≺ ω)
180 isfinite 9693 . . . . . 6 ((𝐴 ⊔ 2o) ∈ Fin ↔ (𝐴 ⊔ 2o) ≺ ω)
181179, 180sylibr 234 . . . . 5 (𝜑 → (𝐴 ⊔ 2o) ∈ Fin)
182 sssucid 6463 . . . . . . . . . 10 1o ⊆ suc 1o
183 df-2o 8508 . . . . . . . . . 10 2o = suc 1o
184182, 183sseqtrri 4032 . . . . . . . . 9 1o ⊆ 2o
185 xpss2 5704 . . . . . . . . 9 (1o ⊆ 2o → ({1o} × 1o) ⊆ ({1o} × 2o))
186184, 185ax-mp 5 . . . . . . . 8 ({1o} × 1o) ⊆ ({1o} × 2o)
187 unss2 4186 . . . . . . . 8 (({1o} × 1o) ⊆ ({1o} × 2o) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
188186, 187mp1i 13 . . . . . . 7 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
189 ssun2 4178 . . . . . . . . 9 ({1o} × 2o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o))
190 1oex 8517 . . . . . . . . . . 11 1o ∈ V
191190snid 4661 . . . . . . . . . 10 1o ∈ {1o}
192190sucid 6465 . . . . . . . . . . 11 1o ∈ suc 1o
193192, 183eleqtrri 2839 . . . . . . . . . 10 1o ∈ 2o
194 opelxpi 5721 . . . . . . . . . 10 ((1o ∈ {1o} ∧ 1o ∈ 2o) → ⟨1o, 1o⟩ ∈ ({1o} × 2o))
195191, 193, 194mp2an 692 . . . . . . . . 9 ⟨1o, 1o⟩ ∈ ({1o} × 2o)
196189, 195sselii 3979 . . . . . . . 8 ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o))
197 1n0 8527 . . . . . . . . . . . 12 1o ≠ ∅
198197neii 2941 . . . . . . . . . . 11 ¬ 1o = ∅
199 opelxp1 5726 . . . . . . . . . . . 12 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
200 elsni 4642 . . . . . . . . . . . 12 (1o ∈ {∅} → 1o = ∅)
201199, 200syl 17 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
202198, 201mto 197 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({∅} × 𝐴)
203 1onn 8679 . . . . . . . . . . . 12 1o ∈ ω
204 nnord 7896 . . . . . . . . . . . 12 (1o ∈ ω → Ord 1o)
205 ordirr 6401 . . . . . . . . . . . 12 (Ord 1o → ¬ 1o ∈ 1o)
206203, 204, 205mp2b 10 . . . . . . . . . . 11 ¬ 1o ∈ 1o
207 opelxp2 5727 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({1o} × 1o) → 1o ∈ 1o)
208206, 207mto 197 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({1o} × 1o)
209202, 208pm3.2ni 880 . . . . . . . . 9 ¬ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o))
210 elun 4152 . . . . . . . . 9 (⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o)))
211209, 210mtbir 323 . . . . . . . 8 ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
212 ssnelpss 4113 . . . . . . . 8 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → ((⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o)) ∧ ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o))))
213196, 211, 212mp2ani 698 . . . . . . 7 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
214188, 213syl 17 . . . . . 6 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
215 df-dju 9942 . . . . . . 7 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
216 df-dju 9942 . . . . . . 7 (𝐴 ⊔ 2o) = (({∅} × 𝐴) ∪ ({1o} × 2o))
217215, 216psseq12i 4093 . . . . . 6 ((𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o) ↔ (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
218214, 217sylibr 234 . . . . 5 (𝜑 → (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o))
219 php3 9250 . . . . 5 (((𝐴 ⊔ 2o) ∈ Fin ∧ (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o)) → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
220181, 218, 219syl2anc 584 . . . 4 (𝜑 → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
221 canthp1lem1 10693 . . . . 5 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
2221, 221syl 17 . . . 4 (𝜑 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
223 sdomdomtr 9151 . . . 4 (((𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
224220, 222, 223syl2anc 584 . . 3 (𝜑 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
225 sdomnen 9022 . . 3 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
226224, 225syl 17 . 2 (𝜑 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2279, 226pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  wpss 3951  c0 4332  ifcif 4524  𝒫 cpw 4599  {csn 4625  cop 4631   cuni 4906   class class class wbr 5142  {copab 5204  cmpt 5224   We wwe 5635   × cxp 5682  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  ccom 5688  Ord word 6382  Oncon0 6383  suc csuc 6385  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  ωcom 7888  1oc1o 8500  2oc2o 8501  cen 8983  cdom 8984  csdm 8985  Fincfn 8986  cdju 9939  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-dju 9942  df-card 9980
This theorem is referenced by:  canthp1  10695
  Copyright terms: Public domain W3C validator