MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 10650
Description: Lemma for canthp1 10651. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1o𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
canthp1lem2.3 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1o𝐴)
2 relsdom 8948 . . . . . . 7 Rel ≺
32brrelex2i 5732 . . . . . 6 (1o𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
54pwexd 5376 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
6 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
7 f1oeng 8969 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
85, 6, 7syl2anc 582 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
98ensymd 9003 . 2 (𝜑 → (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
10 canth2g 9133 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
114, 10syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
12 sdomen2 9124 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
138, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
1411, 13mpbid 231 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 ⊔ 1o))
15 sdomnen 8979 . . . . . . . . 9 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
1614, 15syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
17 omelon 9643 . . . . . . . . . . . 12 ω ∈ On
18 onenon 9946 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
1917, 18ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
20 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
21 dff1o3 6838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) ↔ (𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ Fun 𝐹))
2221simprbi 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → Fun 𝐹)
236, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
24 f1ofo 6839 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
256, 24syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
26 f1ofn 6833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹 Fn 𝒫 𝐴)
27 fnresdm 6668 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
28 foeq1 6800 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
296, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
3025, 29mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o))
31 fvex 6903 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
32 f1osng 6873 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
334, 31, 32sylancl 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
346, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
35 pwidg 4621 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
364, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
37 fnressn 7157 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3834, 36, 37syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3938f1oeq1d 6827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4033, 39mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
41 f1ofo 6839 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
43 resdif 6853 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
4423, 30, 42, 43syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
45 f1oco 6855 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4620, 44, 45syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
47 resco 6248 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
48 f1oeq1 6820 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5046, 49sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
51 f1of 6832 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
53 0elpw 5353 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
55 sdom0 9110 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1o ≺ ∅
56 breq2 5151 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1o ≺ ∅ ↔ 1o𝐴))
5755, 56mtbii 325 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1o𝐴)
5857necon2ai 2968 . . . . . . . . . . . . . . . . . . . . . 22 (1o𝐴 → ∅ ≠ 𝐴)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6059ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
61 eldifsn 4789 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6254, 60, 61sylanbrc 581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
63 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
64 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6564neqned 2945 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
66 eldifsn 4789 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
6763, 65, 66sylanbrc 581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
6862, 67ifclda 4562 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
6968fmpttd 7115 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
7052, 69fcod 6742 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7169frnd 6724 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
72 cores 6247 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7371, 72syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
74 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
7573, 74eqtr4di 2788 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
7675feq1d 6701 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
7770, 76mpbid 231 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
78 inss1 4227 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
7978a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
80 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
81 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
82 eqid 2730 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8380, 81, 82canth4 10644 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
844, 77, 79, 83syl3anc 1369 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
8584simp1d 1140 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
8684simp2d 1141 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
8786pssned 4097 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
8887necomd 2994 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
8984simp3d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9074fveq1i 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9174fveq1i 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9289, 90, 913eqtr3g 2793 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
934, 85sselpwd 5325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
9469, 93fvco3d 6990 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
9586pssssd 4096 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
9695, 85sstrd 3991 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
974, 96sselpwd 5325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
9869, 97fvco3d 6990 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9992, 94, 983eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
10099adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
101 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
102 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
103 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵𝑥 = 𝐵)
104102, 103ifbieq2d 4553 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
105 ifcl 4572 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
10653, 93, 105sylancr 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
107101, 104, 93, 106fvmptd3 7020 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
108 pssne 4095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
109108neneqd 2943 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
110109iffalsed 4538 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
111107, 110sylan9eq 2790 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
112111fveq2d 6894 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
113 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
115113, 114ifbieq2d 4553 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
116 ifcl 4572 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
11753, 97, 116sylancr 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
118101, 115, 97, 117fvmptd3 7020 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
119118adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
120 sspsstr 4104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
12195, 120sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
122121pssned 4097 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
123122neneqd 2943 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
124123iffalsed 4538 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
125119, 124eqtrd 2770 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
126125fveq2d 6894 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
127100, 112, 1263eqtr3d 2778 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
12893, 108anim12i 611 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
129 eldifsn 4789 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
130128, 129sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
131130fvresd 6910 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
13297adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
133 eldifsn 4789 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
134132, 122, 133sylanbrc 581 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
135134fvresd 6910 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
136127, 131, 1353eqtr4d 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
137 f1of1 6831 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
13850, 137syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
139138adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
140 f1fveq 7263 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
141139, 130, 134, 140syl12anc 833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
142136, 141mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
143142ex 411 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
144143necon3ad 2951 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
14588, 144mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
146 npss 4109 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
147145, 146sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
14885, 147mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
149 eqid 2730 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵
150 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐵) = (𝑊𝐵)
151149, 150pm3.2i 469 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
152 elinel1 4194 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
153 ffvelcdm 7082 . . . . . . . . . . . . . . . . . . . 20 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
15477, 152, 153syl2an 594 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
15580, 4, 154, 81fpwwe 10643 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
156151, 155mpbiri 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
157156simpld 493 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊(𝑊𝐵))
15880, 4fpwwelem 10642 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
159157, 158mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
160159simprld 768 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
161 fvex 6903 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
162 weeq1 5663 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
163161, 162spcev 3595 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
164160, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
165 ween 10032 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
166164, 165sylibr 233 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
167148, 166eqeltrrd 2832 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
168 domtri2 9986 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
16919, 167, 168sylancr 585 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
170 infdju1 10186 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
171169, 170syl6bir 253 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 ⊔ 1o) ≈ 𝐴))
172 ensym 9001 . . . . . . . . 9 ((𝐴 ⊔ 1o) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
173171, 172syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 ⊔ 1o)))
17416, 173mt3d 148 . . . . . . 7 (𝜑𝐴 ≺ ω)
175 2onn 8643 . . . . . . . 8 2o ∈ ω
176 nnsdom 9651 . . . . . . . 8 (2o ∈ ω → 2o ≺ ω)
177175, 176ax-mp 5 . . . . . . 7 2o ≺ ω
178 djufi 10183 . . . . . . 7 ((𝐴 ≺ ω ∧ 2o ≺ ω) → (𝐴 ⊔ 2o) ≺ ω)
179174, 177, 178sylancl 584 . . . . . 6 (𝜑 → (𝐴 ⊔ 2o) ≺ ω)
180 isfinite 9649 . . . . . 6 ((𝐴 ⊔ 2o) ∈ Fin ↔ (𝐴 ⊔ 2o) ≺ ω)
181179, 180sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 2o) ∈ Fin)
182 sssucid 6443 . . . . . . . . . 10 1o ⊆ suc 1o
183 df-2o 8469 . . . . . . . . . 10 2o = suc 1o
184182, 183sseqtrri 4018 . . . . . . . . 9 1o ⊆ 2o
185 xpss2 5695 . . . . . . . . 9 (1o ⊆ 2o → ({1o} × 1o) ⊆ ({1o} × 2o))
186184, 185ax-mp 5 . . . . . . . 8 ({1o} × 1o) ⊆ ({1o} × 2o)
187 unss2 4180 . . . . . . . 8 (({1o} × 1o) ⊆ ({1o} × 2o) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
188186, 187mp1i 13 . . . . . . 7 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
189 ssun2 4172 . . . . . . . . 9 ({1o} × 2o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o))
190 1oex 8478 . . . . . . . . . . 11 1o ∈ V
191190snid 4663 . . . . . . . . . 10 1o ∈ {1o}
192190sucid 6445 . . . . . . . . . . 11 1o ∈ suc 1o
193192, 183eleqtrri 2830 . . . . . . . . . 10 1o ∈ 2o
194 opelxpi 5712 . . . . . . . . . 10 ((1o ∈ {1o} ∧ 1o ∈ 2o) → ⟨1o, 1o⟩ ∈ ({1o} × 2o))
195191, 193, 194mp2an 688 . . . . . . . . 9 ⟨1o, 1o⟩ ∈ ({1o} × 2o)
196189, 195sselii 3978 . . . . . . . 8 ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o))
197 1n0 8490 . . . . . . . . . . . 12 1o ≠ ∅
198197neii 2940 . . . . . . . . . . 11 ¬ 1o = ∅
199 opelxp1 5717 . . . . . . . . . . . 12 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
200 elsni 4644 . . . . . . . . . . . 12 (1o ∈ {∅} → 1o = ∅)
201199, 200syl 17 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
202198, 201mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({∅} × 𝐴)
203 1onn 8641 . . . . . . . . . . . 12 1o ∈ ω
204 nnord 7865 . . . . . . . . . . . 12 (1o ∈ ω → Ord 1o)
205 ordirr 6381 . . . . . . . . . . . 12 (Ord 1o → ¬ 1o ∈ 1o)
206203, 204, 205mp2b 10 . . . . . . . . . . 11 ¬ 1o ∈ 1o
207 opelxp2 5718 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({1o} × 1o) → 1o ∈ 1o)
208206, 207mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({1o} × 1o)
209202, 208pm3.2ni 877 . . . . . . . . 9 ¬ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o))
210 elun 4147 . . . . . . . . 9 (⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o)))
211209, 210mtbir 322 . . . . . . . 8 ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
212 ssnelpss 4110 . . . . . . . 8 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → ((⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o)) ∧ ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o))))
213196, 211, 212mp2ani 694 . . . . . . 7 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
214188, 213syl 17 . . . . . 6 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
215 df-dju 9898 . . . . . . 7 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
216 df-dju 9898 . . . . . . 7 (𝐴 ⊔ 2o) = (({∅} × 𝐴) ∪ ({1o} × 2o))
217215, 216psseq12i 4090 . . . . . 6 ((𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o) ↔ (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
218214, 217sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o))
219 php3 9214 . . . . 5 (((𝐴 ⊔ 2o) ∈ Fin ∧ (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o)) → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
220181, 218, 219syl2anc 582 . . . 4 (𝜑 → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
221 canthp1lem1 10649 . . . . 5 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
2221, 221syl 17 . . . 4 (𝜑 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
223 sdomdomtr 9112 . . . 4 (((𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
224220, 222, 223syl2anc 582 . . 3 (𝜑 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
225 sdomnen 8979 . . 3 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
226224, 225syl 17 . 2 (𝜑 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2279, 226pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wne 2938  wral 3059  Vcvv 3472  cdif 3944  cun 3945  cin 3946  wss 3947  wpss 3948  c0 4321  ifcif 4527  𝒫 cpw 4601  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147  {copab 5209  cmpt 5230   We wwe 5629   × cxp 5673  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  ccom 5679  Ord word 6362  Oncon0 6363  suc csuc 6365  Fun wfun 6536   Fn wfn 6537  wf 6538  1-1wf1 6539  ontowfo 6540  1-1-ontowf1o 6541  cfv 6542  ωcom 7857  1oc1o 8461  2oc2o 8462  cen 8938  cdom 8939  csdm 8940  Fincfn 8941  cdju 9895  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-dju 9898  df-card 9936
This theorem is referenced by:  canthp1  10651
  Copyright terms: Public domain W3C validator