MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 10340
Description: Lemma for canthp1 10341. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1o𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
canthp1lem2.3 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1o𝐴)
2 relsdom 8698 . . . . . . 7 Rel ≺
32brrelex2i 5635 . . . . . 6 (1o𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
54pwexd 5297 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
6 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
7 f1oeng 8714 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
85, 6, 7syl2anc 583 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
98ensymd 8746 . 2 (𝜑 → (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
10 canth2g 8867 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
114, 10syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
12 sdomen2 8858 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
138, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 ⊔ 1o)))
1411, 13mpbid 231 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 ⊔ 1o))
15 sdomnen 8724 . . . . . . . . 9 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
1614, 15syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
17 omelon 9334 . . . . . . . . . . . 12 ω ∈ On
18 onenon 9638 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
1917, 18ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
20 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
21 dff1o3 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) ↔ (𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ Fun 𝐹))
2221simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → Fun 𝐹)
236, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
24 f1ofo 6707 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
256, 24syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o))
26 f1ofn 6701 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝐹 Fn 𝒫 𝐴)
27 fnresdm 6535 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
28 foeq1 6668 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
296, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ↔ 𝐹:𝒫 𝐴onto→(𝐴 ⊔ 1o)))
3025, 29mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o))
31 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
32 f1osng 6740 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
334, 31, 32sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
346, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
35 pwidg 4552 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
364, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
37 fnressn 7012 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3834, 36, 37syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
3938f1oeq1d 6695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4033, 39mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
41 f1ofo 6707 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
43 resdif 6720 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 ⊔ 1o) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
4423, 30, 42, 43syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)}))
45 f1oco 6722 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4620, 44, 45syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
47 resco 6143 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
48 f1oeq1 6688 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5046, 49sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
51 f1of 6700 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
53 0elpw 5273 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
55 sdom0 8845 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1o ≺ ∅
56 breq2 5074 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1o ≺ ∅ ↔ 1o𝐴))
5755, 56mtbii 325 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1o𝐴)
5857necon2ai 2972 . . . . . . . . . . . . . . . . . . . . . 22 (1o𝐴 → ∅ ≠ 𝐴)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6059ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
61 eldifsn 4717 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6254, 60, 61sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
63 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
64 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6564neqned 2949 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
66 eldifsn 4717 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
6763, 65, 66sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
6862, 67ifclda 4491 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
6968fmpttd 6971 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
7052, 69fcod 6610 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7169frnd 6592 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
72 cores 6142 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7371, 72syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
74 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
7573, 74eqtr4di 2797 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
7675feq1d 6569 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
7770, 76mpbid 231 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
78 inss1 4159 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
7978a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
80 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
81 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
82 eqid 2738 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8380, 81, 82canth4 10334 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
844, 77, 79, 83syl3anc 1369 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
8584simp1d 1140 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
8684simp2d 1141 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
8786pssned 4029 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
8887necomd 2998 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
8984simp3d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9074fveq1i 6757 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9174fveq1i 6757 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9289, 90, 913eqtr3g 2802 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
934, 85sselpwd 5245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
9469, 93fvco3d 6850 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
9586pssssd 4028 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
9695, 85sstrd 3927 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
974, 96sselpwd 5245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
9869, 97fvco3d 6850 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9992, 94, 983eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
10099adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
101 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
102 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
103 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵𝑥 = 𝐵)
104102, 103ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
105 ifcl 4501 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
10653, 93, 105sylancr 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
107101, 104, 93, 106fvmptd3 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
108 pssne 4027 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
109108neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
110109iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
111107, 110sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
112111fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
113 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
115113, 114ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
116 ifcl 4501 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
11753, 97, 116sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
118101, 115, 97, 117fvmptd3 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
119118adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
120 sspsstr 4036 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
12195, 120sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
122121pssned 4029 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
123122neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
124123iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
125119, 124eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
126125fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
127100, 112, 1263eqtr3d 2786 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
12893, 108anim12i 612 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
129 eldifsn 4717 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
130128, 129sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
131130fvresd 6776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
13297adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
133 eldifsn 4717 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
134132, 122, 133sylanbrc 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
135134fvresd 6776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
136127, 131, 1353eqtr4d 2788 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
137 f1of1 6699 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
13850, 137syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
140 f1fveq 7116 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
141139, 130, 134, 140syl12anc 833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
142136, 141mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
143142ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
144143necon3ad 2955 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
14588, 144mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
146 npss 4041 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
147145, 146sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
14885, 147mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
149 eqid 2738 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵
150 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐵) = (𝑊𝐵)
151149, 150pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
152 elinel1 4125 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
153 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . 20 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
15477, 152, 153syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
15580, 4, 154, 81fpwwe 10333 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
156151, 155mpbiri 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
157156simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊(𝑊𝐵))
15880, 4fpwwelem 10332 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
159157, 158mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
160159simprld 768 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
161 fvex 6769 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
162 weeq1 5568 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
163161, 162spcev 3535 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
164160, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
165 ween 9722 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
166164, 165sylibr 233 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
167148, 166eqeltrrd 2840 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
168 domtri2 9678 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
16919, 167, 168sylancr 586 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
170 infdju1 9876 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
171169, 170syl6bir 253 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 ⊔ 1o) ≈ 𝐴))
172 ensym 8744 . . . . . . . . 9 ((𝐴 ⊔ 1o) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
173171, 172syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 ⊔ 1o)))
17416, 173mt3d 148 . . . . . . 7 (𝜑𝐴 ≺ ω)
175 2onn 8433 . . . . . . . 8 2o ∈ ω
176 nnsdom 9342 . . . . . . . 8 (2o ∈ ω → 2o ≺ ω)
177175, 176ax-mp 5 . . . . . . 7 2o ≺ ω
178 djufi 9873 . . . . . . 7 ((𝐴 ≺ ω ∧ 2o ≺ ω) → (𝐴 ⊔ 2o) ≺ ω)
179174, 177, 178sylancl 585 . . . . . 6 (𝜑 → (𝐴 ⊔ 2o) ≺ ω)
180 isfinite 9340 . . . . . 6 ((𝐴 ⊔ 2o) ∈ Fin ↔ (𝐴 ⊔ 2o) ≺ ω)
181179, 180sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 2o) ∈ Fin)
182 sssucid 6328 . . . . . . . . . 10 1o ⊆ suc 1o
183 df-2o 8268 . . . . . . . . . 10 2o = suc 1o
184182, 183sseqtrri 3954 . . . . . . . . 9 1o ⊆ 2o
185 xpss2 5600 . . . . . . . . 9 (1o ⊆ 2o → ({1o} × 1o) ⊆ ({1o} × 2o))
186184, 185ax-mp 5 . . . . . . . 8 ({1o} × 1o) ⊆ ({1o} × 2o)
187 unss2 4111 . . . . . . . 8 (({1o} × 1o) ⊆ ({1o} × 2o) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
188186, 187mp1i 13 . . . . . . 7 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)))
189 ssun2 4103 . . . . . . . . 9 ({1o} × 2o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o))
190 1oex 8280 . . . . . . . . . . 11 1o ∈ V
191190snid 4594 . . . . . . . . . 10 1o ∈ {1o}
192190sucid 6330 . . . . . . . . . . 11 1o ∈ suc 1o
193192, 183eleqtrri 2838 . . . . . . . . . 10 1o ∈ 2o
194 opelxpi 5617 . . . . . . . . . 10 ((1o ∈ {1o} ∧ 1o ∈ 2o) → ⟨1o, 1o⟩ ∈ ({1o} × 2o))
195191, 193, 194mp2an 688 . . . . . . . . 9 ⟨1o, 1o⟩ ∈ ({1o} × 2o)
196189, 195sselii 3914 . . . . . . . 8 ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o))
197 1n0 8286 . . . . . . . . . . . 12 1o ≠ ∅
198197neii 2944 . . . . . . . . . . 11 ¬ 1o = ∅
199 opelxp1 5621 . . . . . . . . . . . 12 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
200 elsni 4575 . . . . . . . . . . . 12 (1o ∈ {∅} → 1o = ∅)
201199, 200syl 17 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
202198, 201mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({∅} × 𝐴)
203 1onn 8432 . . . . . . . . . . . 12 1o ∈ ω
204 nnord 7695 . . . . . . . . . . . 12 (1o ∈ ω → Ord 1o)
205 ordirr 6269 . . . . . . . . . . . 12 (Ord 1o → ¬ 1o ∈ 1o)
206203, 204, 205mp2b 10 . . . . . . . . . . 11 ¬ 1o ∈ 1o
207 opelxp2 5622 . . . . . . . . . . 11 (⟨1o, 1o⟩ ∈ ({1o} × 1o) → 1o ∈ 1o)
208206, 207mto 196 . . . . . . . . . 10 ¬ ⟨1o, 1o⟩ ∈ ({1o} × 1o)
209202, 208pm3.2ni 877 . . . . . . . . 9 ¬ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o))
210 elun 4079 . . . . . . . . 9 (⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ (⟨1o, 1o⟩ ∈ ({∅} × 𝐴) ∨ ⟨1o, 1o⟩ ∈ ({1o} × 1o)))
211209, 210mtbir 322 . . . . . . . 8 ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
212 ssnelpss 4042 . . . . . . . 8 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → ((⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 2o)) ∧ ¬ ⟨1o, 1o⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o))))
213196, 211, 212mp2ani 694 . . . . . . 7 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ⊆ (({∅} × 𝐴) ∪ ({1o} × 2o)) → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
214188, 213syl 17 . . . . . 6 (𝜑 → (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
215 df-dju 9590 . . . . . . 7 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
216 df-dju 9590 . . . . . . 7 (𝐴 ⊔ 2o) = (({∅} × 𝐴) ∪ ({1o} × 2o))
217215, 216psseq12i 4022 . . . . . 6 ((𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o) ↔ (({∅} × 𝐴) ∪ ({1o} × 1o)) ⊊ (({∅} × 𝐴) ∪ ({1o} × 2o)))
218214, 217sylibr 233 . . . . 5 (𝜑 → (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o))
219 php3 8899 . . . . 5 (((𝐴 ⊔ 2o) ∈ Fin ∧ (𝐴 ⊔ 1o) ⊊ (𝐴 ⊔ 2o)) → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
220181, 218, 219syl2anc 583 . . . 4 (𝜑 → (𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o))
221 canthp1lem1 10339 . . . . 5 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
2221, 221syl 17 . . . 4 (𝜑 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
223 sdomdomtr 8846 . . . 4 (((𝐴 ⊔ 1o) ≺ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
224220, 222, 223syl2anc 583 . . 3 (𝜑 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
225 sdomnen 8724 . . 3 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
226224, 225syl 17 . 2 (𝜑 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2279, 226pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  wpss 3884  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  {copab 5132  cmpt 5153   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Ord word 6250  Oncon0 6251  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  ωcom 7687  1oc1o 8260  2oc2o 8261  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cdju 9587  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628
This theorem is referenced by:  canthp1  10341
  Copyright terms: Public domain W3C validator