MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgvalstructOLD Structured version   Visualization version   GIF version

Theorem symgvalstructOLD 19259
Description: Obsolete proof of symgvalstruct 19258 as of 6-Nov-2024. The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
symgvalstructOLD.g 𝐺 = (SymGrp‘𝐴)
symgvalstructOLD.b 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
symgvalstructOLD.m 𝑀 = (𝐴m 𝐴)
symgvalstructOLD.p + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
symgvalstructOLD.j 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
symgvalstructOLD (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable groups:   𝐴,𝑓,𝑔   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑓,𝑀,𝑔   𝑥,𝑉   𝑥, +
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑀(𝑥)   𝑉(𝑓,𝑔)

Proof of Theorem symgvalstructOLD
StepHypRef Expression
1 hashv01gt1 14301 . 2 (𝐴𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
2 hasheq0 14319 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
3 0symgefmndeq 19255 . . . . . . . . 9 (EndoFMnd‘∅) = (SymGrp‘∅)
43eqcomi 2741 . . . . . . . 8 (SymGrp‘∅) = (EndoFMnd‘∅)
5 symgvalstructOLD.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐴)
6 fveq2 6888 . . . . . . . . 9 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
75, 6eqtrid 2784 . . . . . . . 8 (𝐴 = ∅ → 𝐺 = (SymGrp‘∅))
8 fveq2 6888 . . . . . . . 8 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
94, 7, 83eqtr4a 2798 . . . . . . 7 (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴))
109adantl 482 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴))
11 eqid 2732 . . . . . . . 8 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
12 symgvalstructOLD.m . . . . . . . 8 𝑀 = (𝐴m 𝐴)
13 symgvalstructOLD.p . . . . . . . 8 + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
14 symgvalstructOLD.j . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
1511, 12, 13, 14efmnd 18747 . . . . . . 7 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1615adantr 481 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
17 0map0sn0 8875 . . . . . . . . . . 11 (∅ ↑m ∅) = {∅}
18 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918, 18oveq12d 7423 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐴m 𝐴) = (∅ ↑m ∅))
20 symgvalstructOLD.b . . . . . . . . . . . 12 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
217fveq2d 6892 . . . . . . . . . . . . 13 (𝐴 = ∅ → (Base‘𝐺) = (Base‘(SymGrp‘∅)))
22 eqid 2732 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
235, 22symgbas 19232 . . . . . . . . . . . . 13 (Base‘𝐺) = {𝑥𝑥:𝐴1-1-onto𝐴}
24 symgbas0 19250 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
2521, 23, 243eqtr3g 2795 . . . . . . . . . . . 12 (𝐴 = ∅ → {𝑥𝑥:𝐴1-1-onto𝐴} = {∅})
2620, 25eqtrid 2784 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐵 = {∅})
2717, 19, 263eqtr4a 2798 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴m 𝐴) = 𝐵)
2827adantl 482 . . . . . . . . 9 ((𝐴𝑉𝐴 = ∅) → (𝐴m 𝐴) = 𝐵)
2912, 28eqtrid 2784 . . . . . . . 8 ((𝐴𝑉𝐴 = ∅) → 𝑀 = 𝐵)
3029opeq2d 4879 . . . . . . 7 ((𝐴𝑉𝐴 = ∅) → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
3130tpeq1d 4748 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3210, 16, 313eqtrd 2776 . . . . 5 ((𝐴𝑉𝐴 = ∅) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3332ex 413 . . . 4 (𝐴𝑉 → (𝐴 = ∅ → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
342, 33sylbid 239 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
35 hash1snb 14375 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥}))
36 snex 5430 . . . . . . . 8 {𝑥} ∈ V
37 eleq1 2821 . . . . . . . 8 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
3836, 37mpbiri 257 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 ∈ V)
3911, 12, 13, 14efmnd 18747 . . . . . . 7 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
4038, 39syl 17 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
41 snsymgefmndeq 19256 . . . . . . 7 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
4241, 5eqtr4di 2790 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺)
4342fveq2d 6892 . . . . . . . . 9 (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺))
44 eqid 2732 . . . . . . . . . . 11 (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴))
4511, 44efmndbas 18748 . . . . . . . . . 10 (Base‘(EndoFMnd‘𝐴)) = (𝐴m 𝐴)
4645, 12eqtr4i 2763 . . . . . . . . 9 (Base‘(EndoFMnd‘𝐴)) = 𝑀
4723, 20eqtr4i 2763 . . . . . . . . 9 (Base‘𝐺) = 𝐵
4843, 46, 473eqtr3g 2795 . . . . . . . 8 (𝐴 = {𝑥} → 𝑀 = 𝐵)
4948opeq2d 4879 . . . . . . 7 (𝐴 = {𝑥} → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
5049tpeq1d 4748 . . . . . 6 (𝐴 = {𝑥} → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5140, 42, 503eqtr3d 2780 . . . . 5 (𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5251exlimiv 1933 . . . 4 (∃𝑥 𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5335, 52syl6bi 252 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
54 ssnpss 4102 . . . . . . 7 ((𝐴m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴m 𝐴))
5511, 5symgpssefmnd 19257 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5620, 23eqtr4i 2763 . . . . . . . . 9 𝐵 = (Base‘𝐺)
5745eqcomi 2741 . . . . . . . . 9 (𝐴m 𝐴) = (Base‘(EndoFMnd‘𝐴))
5856, 57psseq12i 4090 . . . . . . . 8 (𝐵 ⊊ (𝐴m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5955, 58sylibr 233 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴m 𝐴))
6054, 59nsyl3 138 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴m 𝐴) ⊆ 𝐵)
61 fvexd 6903 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V)
62 f1osetex 8849 . . . . . . . 8 {𝑥𝑥:𝐴1-1-onto𝐴} ∈ V
6320, 62eqeltri 2829 . . . . . . 7 𝐵 ∈ V
6463a1i 11 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V)
655, 20symgval 19230 . . . . . . 7 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
6665, 57ressval2 17174 . . . . . 6 ((¬ (𝐴m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
6760, 61, 64, 66syl3anc 1371 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
68 ovex 7438 . . . . . . 7 (𝐴m 𝐴) ∈ V
6968inex2 5317 . . . . . 6 (𝐵 ∩ (𝐴m 𝐴)) ∈ V
70 setsval 17096 . . . . . 6 (((EndoFMnd‘𝐴) ∈ V ∧ (𝐵 ∩ (𝐴m 𝐴)) ∈ V) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7161, 69, 70sylancl 586 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7215adantr 481 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
7372reseq1d 5978 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})))
7473uneq1d 4161 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
75 eqidd 2733 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
76 fvexd 6903 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ∈ V)
77 fvexd 6903 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ∈ V)
7812, 68eqeltri 2829 . . . . . . . . . . 11 𝑀 ∈ V
7978, 78mpoex 8062 . . . . . . . . . 10 (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔)) ∈ V
8013, 79eqeltri 2829 . . . . . . . . 9 + ∈ V
8180a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V)
8214fvexi 6902 . . . . . . . . 9 𝐽 ∈ V
8382a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V)
84 basendxnplusgndx 17223 . . . . . . . . . 10 (Base‘ndx) ≠ (+g‘ndx)
8584necomi 2995 . . . . . . . . 9 (+g‘ndx) ≠ (Base‘ndx)
8685a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ≠ (Base‘ndx))
87 tsetndx 17293 . . . . . . . . . 10 (TopSet‘ndx) = 9
88 1re 11210 . . . . . . . . . . . 12 1 ∈ ℝ
89 1lt9 12414 . . . . . . . . . . . 12 1 < 9
9088, 89gtneii 11322 . . . . . . . . . . 11 9 ≠ 1
91 df-base 17141 . . . . . . . . . . . 12 Base = Slot 1
92 1nn 12219 . . . . . . . . . . . 12 1 ∈ ℕ
9391, 92ndxarg 17125 . . . . . . . . . . 11 (Base‘ndx) = 1
9490, 93neeqtrri 3014 . . . . . . . . . 10 9 ≠ (Base‘ndx)
9587, 94eqnetri 3011 . . . . . . . . 9 (TopSet‘ndx) ≠ (Base‘ndx)
9695a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ≠ (Base‘ndx))
9775, 76, 77, 81, 83, 86, 96tpres 7198 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) = {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
9897uneq1d 4161 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
99 uncom 4152 . . . . . . . 8 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
100 tpass 4755 . . . . . . . 8 {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10199, 100eqtr4i 2763 . . . . . . 7 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
1025, 56symgbasmap 19238 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ (𝐴m 𝐴))
103102a1i 11 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥𝐵𝑥 ∈ (𝐴m 𝐴)))
104103ssrdv 3987 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴m 𝐴))
105 df-ss 3964 . . . . . . . . . 10 (𝐵 ⊆ (𝐴m 𝐴) ↔ (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
106104, 105sylib 217 . . . . . . . . 9 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
107106opeq2d 4879 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩ = ⟨(Base‘ndx), 𝐵⟩)
108107tpeq1d 4748 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
109101, 108eqtrid 2784 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
11074, 98, 1093eqtrd 2776 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
11167, 71, 1103eqtrd 2776 . . . 4 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
112111ex 413 . . 3 (𝐴𝑉 → (1 < (♯‘𝐴) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
11334, 53, 1123jaod 1428 . 2 (𝐴𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
1141, 113mpd 15 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3o 1086   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wne 2940  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  wpss 3948  c0 4321  𝒫 cpw 4601  {csn 4627  {cpr 4629  {ctp 4631  cop 4633   class class class wbr 5147   × cxp 5673  cres 5677  ccom 5679  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cmpo 7407  m cmap 8816  0cc0 11106  1c1 11107   < clt 11244  9c9 12270  chash 14286   sSet csts 17092  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  TopSetcts 17199  tcpt 17380  EndoFMndcefmnd 18745  SymGrpcsymg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator