MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgvalstructOLD Structured version   Visualization version   GIF version

Theorem symgvalstructOLD 19186
Description: Obsolete proof of symgvalstruct 19185 as of 6-Nov-2024. The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
symgvalstructOLD.g 𝐺 = (SymGrp‘𝐴)
symgvalstructOLD.b 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
symgvalstructOLD.m 𝑀 = (𝐴m 𝐴)
symgvalstructOLD.p + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
symgvalstructOLD.j 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
symgvalstructOLD (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable groups:   𝐴,𝑓,𝑔   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑓,𝑀,𝑔   𝑥,𝑉   𝑥, +
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑀(𝑥)   𝑉(𝑓,𝑔)

Proof of Theorem symgvalstructOLD
StepHypRef Expression
1 hashv01gt1 14252 . 2 (𝐴𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
2 hasheq0 14270 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
3 0symgefmndeq 19182 . . . . . . . . 9 (EndoFMnd‘∅) = (SymGrp‘∅)
43eqcomi 2746 . . . . . . . 8 (SymGrp‘∅) = (EndoFMnd‘∅)
5 symgvalstructOLD.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐴)
6 fveq2 6847 . . . . . . . . 9 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
75, 6eqtrid 2789 . . . . . . . 8 (𝐴 = ∅ → 𝐺 = (SymGrp‘∅))
8 fveq2 6847 . . . . . . . 8 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
94, 7, 83eqtr4a 2803 . . . . . . 7 (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴))
109adantl 483 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴))
11 eqid 2737 . . . . . . . 8 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
12 symgvalstructOLD.m . . . . . . . 8 𝑀 = (𝐴m 𝐴)
13 symgvalstructOLD.p . . . . . . . 8 + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
14 symgvalstructOLD.j . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
1511, 12, 13, 14efmnd 18687 . . . . . . 7 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1615adantr 482 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
17 0map0sn0 8830 . . . . . . . . . . 11 (∅ ↑m ∅) = {∅}
18 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918, 18oveq12d 7380 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐴m 𝐴) = (∅ ↑m ∅))
20 symgvalstructOLD.b . . . . . . . . . . . 12 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
217fveq2d 6851 . . . . . . . . . . . . 13 (𝐴 = ∅ → (Base‘𝐺) = (Base‘(SymGrp‘∅)))
22 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
235, 22symgbas 19159 . . . . . . . . . . . . 13 (Base‘𝐺) = {𝑥𝑥:𝐴1-1-onto𝐴}
24 symgbas0 19177 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
2521, 23, 243eqtr3g 2800 . . . . . . . . . . . 12 (𝐴 = ∅ → {𝑥𝑥:𝐴1-1-onto𝐴} = {∅})
2620, 25eqtrid 2789 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐵 = {∅})
2717, 19, 263eqtr4a 2803 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴m 𝐴) = 𝐵)
2827adantl 483 . . . . . . . . 9 ((𝐴𝑉𝐴 = ∅) → (𝐴m 𝐴) = 𝐵)
2912, 28eqtrid 2789 . . . . . . . 8 ((𝐴𝑉𝐴 = ∅) → 𝑀 = 𝐵)
3029opeq2d 4842 . . . . . . 7 ((𝐴𝑉𝐴 = ∅) → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
3130tpeq1d 4711 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3210, 16, 313eqtrd 2781 . . . . 5 ((𝐴𝑉𝐴 = ∅) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3332ex 414 . . . 4 (𝐴𝑉 → (𝐴 = ∅ → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
342, 33sylbid 239 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
35 hash1snb 14326 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥}))
36 snex 5393 . . . . . . . 8 {𝑥} ∈ V
37 eleq1 2826 . . . . . . . 8 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
3836, 37mpbiri 258 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 ∈ V)
3911, 12, 13, 14efmnd 18687 . . . . . . 7 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
4038, 39syl 17 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
41 snsymgefmndeq 19183 . . . . . . 7 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
4241, 5eqtr4di 2795 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺)
4342fveq2d 6851 . . . . . . . . 9 (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺))
44 eqid 2737 . . . . . . . . . . 11 (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴))
4511, 44efmndbas 18688 . . . . . . . . . 10 (Base‘(EndoFMnd‘𝐴)) = (𝐴m 𝐴)
4645, 12eqtr4i 2768 . . . . . . . . 9 (Base‘(EndoFMnd‘𝐴)) = 𝑀
4723, 20eqtr4i 2768 . . . . . . . . 9 (Base‘𝐺) = 𝐵
4843, 46, 473eqtr3g 2800 . . . . . . . 8 (𝐴 = {𝑥} → 𝑀 = 𝐵)
4948opeq2d 4842 . . . . . . 7 (𝐴 = {𝑥} → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
5049tpeq1d 4711 . . . . . 6 (𝐴 = {𝑥} → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5140, 42, 503eqtr3d 2785 . . . . 5 (𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5251exlimiv 1934 . . . 4 (∃𝑥 𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5335, 52syl6bi 253 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
54 ssnpss 4068 . . . . . . 7 ((𝐴m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴m 𝐴))
5511, 5symgpssefmnd 19184 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5620, 23eqtr4i 2768 . . . . . . . . 9 𝐵 = (Base‘𝐺)
5745eqcomi 2746 . . . . . . . . 9 (𝐴m 𝐴) = (Base‘(EndoFMnd‘𝐴))
5856, 57psseq12i 4056 . . . . . . . 8 (𝐵 ⊊ (𝐴m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5955, 58sylibr 233 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴m 𝐴))
6054, 59nsyl3 138 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴m 𝐴) ⊆ 𝐵)
61 fvexd 6862 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V)
62 f1osetex 8804 . . . . . . . 8 {𝑥𝑥:𝐴1-1-onto𝐴} ∈ V
6320, 62eqeltri 2834 . . . . . . 7 𝐵 ∈ V
6463a1i 11 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V)
655, 20symgval 19157 . . . . . . 7 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
6665, 57ressval2 17124 . . . . . 6 ((¬ (𝐴m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
6760, 61, 64, 66syl3anc 1372 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
68 ovex 7395 . . . . . . 7 (𝐴m 𝐴) ∈ V
6968inex2 5280 . . . . . 6 (𝐵 ∩ (𝐴m 𝐴)) ∈ V
70 setsval 17046 . . . . . 6 (((EndoFMnd‘𝐴) ∈ V ∧ (𝐵 ∩ (𝐴m 𝐴)) ∈ V) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7161, 69, 70sylancl 587 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7215adantr 482 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
7372reseq1d 5941 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})))
7473uneq1d 4127 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
75 eqidd 2738 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
76 fvexd 6862 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ∈ V)
77 fvexd 6862 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ∈ V)
7812, 68eqeltri 2834 . . . . . . . . . . 11 𝑀 ∈ V
7978, 78mpoex 8017 . . . . . . . . . 10 (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔)) ∈ V
8013, 79eqeltri 2834 . . . . . . . . 9 + ∈ V
8180a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V)
8214fvexi 6861 . . . . . . . . 9 𝐽 ∈ V
8382a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V)
84 basendxnplusgndx 17170 . . . . . . . . . 10 (Base‘ndx) ≠ (+g‘ndx)
8584necomi 2999 . . . . . . . . 9 (+g‘ndx) ≠ (Base‘ndx)
8685a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ≠ (Base‘ndx))
87 tsetndx 17240 . . . . . . . . . 10 (TopSet‘ndx) = 9
88 1re 11162 . . . . . . . . . . . 12 1 ∈ ℝ
89 1lt9 12366 . . . . . . . . . . . 12 1 < 9
9088, 89gtneii 11274 . . . . . . . . . . 11 9 ≠ 1
91 df-base 17091 . . . . . . . . . . . 12 Base = Slot 1
92 1nn 12171 . . . . . . . . . . . 12 1 ∈ ℕ
9391, 92ndxarg 17075 . . . . . . . . . . 11 (Base‘ndx) = 1
9490, 93neeqtrri 3018 . . . . . . . . . 10 9 ≠ (Base‘ndx)
9587, 94eqnetri 3015 . . . . . . . . 9 (TopSet‘ndx) ≠ (Base‘ndx)
9695a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ≠ (Base‘ndx))
9775, 76, 77, 81, 83, 86, 96tpres 7155 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) = {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
9897uneq1d 4127 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
99 uncom 4118 . . . . . . . 8 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
100 tpass 4718 . . . . . . . 8 {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10199, 100eqtr4i 2768 . . . . . . 7 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
1025, 56symgbasmap 19165 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ (𝐴m 𝐴))
103102a1i 11 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥𝐵𝑥 ∈ (𝐴m 𝐴)))
104103ssrdv 3955 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴m 𝐴))
105 df-ss 3932 . . . . . . . . . 10 (𝐵 ⊆ (𝐴m 𝐴) ↔ (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
106104, 105sylib 217 . . . . . . . . 9 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
107106opeq2d 4842 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩ = ⟨(Base‘ndx), 𝐵⟩)
108107tpeq1d 4711 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
109101, 108eqtrid 2789 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
11074, 98, 1093eqtrd 2781 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
11167, 71, 1103eqtrd 2781 . . . 4 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
112111ex 414 . . 3 (𝐴𝑉 → (1 < (♯‘𝐴) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
11334, 53, 1123jaod 1429 . 2 (𝐴𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
1141, 113mpd 15 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3o 1087   = wceq 1542  wex 1782  wcel 2107  {cab 2714  wne 2944  Vcvv 3448  cdif 3912  cun 3913  cin 3914  wss 3915  wpss 3916  c0 4287  𝒫 cpw 4565  {csn 4591  {cpr 4593  {ctp 4595  cop 4597   class class class wbr 5110   × cxp 5636  cres 5640  ccom 5642  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  cmpo 7364  m cmap 8772  0cc0 11058  1c1 11059   < clt 11196  9c9 12222  chash 14237   sSet csts 17042  ndxcnx 17072  Basecbs 17090  +gcplusg 17140  TopSetcts 17146  tcpt 17327  EndoFMndcefmnd 18685  SymGrpcsymg 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-tset 17159  df-efmnd 18686  df-symg 19156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator