Proof of Theorem symgvalstructOLD
| Step | Hyp | Ref
 | Expression | 
| 1 |   | hashv01gt1 14365 | 
. 2
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))) | 
| 2 |   | hasheq0 14383 | 
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | 
| 3 |   | 0symgefmndeq 19378 | 
. . . . . . . . 9
⊢
(EndoFMnd‘∅) = (SymGrp‘∅) | 
| 4 | 3 | eqcomi 2743 | 
. . . . . . . 8
⊢
(SymGrp‘∅) = (EndoFMnd‘∅) | 
| 5 |   | symgvalstructOLD.g | 
. . . . . . . . 9
⊢ 𝐺 = (SymGrp‘𝐴) | 
| 6 |   | fveq2 6885 | 
. . . . . . . . 9
⊢ (𝐴 = ∅ →
(SymGrp‘𝐴) =
(SymGrp‘∅)) | 
| 7 | 5, 6 | eqtrid 2781 | 
. . . . . . . 8
⊢ (𝐴 = ∅ → 𝐺 =
(SymGrp‘∅)) | 
| 8 |   | fveq2 6885 | 
. . . . . . . 8
⊢ (𝐴 = ∅ →
(EndoFMnd‘𝐴) =
(EndoFMnd‘∅)) | 
| 9 | 4, 7, 8 | 3eqtr4a 2795 | 
. . . . . . 7
⊢ (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴)) | 
| 10 | 9 | adantl 481 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴)) | 
| 11 |   | eqid 2734 | 
. . . . . . . 8
⊢
(EndoFMnd‘𝐴) =
(EndoFMnd‘𝐴) | 
| 12 |   | symgvalstructOLD.m | 
. . . . . . . 8
⊢ 𝑀 = (𝐴 ↑m 𝐴) | 
| 13 |   | symgvalstructOLD.p | 
. . . . . . . 8
⊢  + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) | 
| 14 |   | symgvalstructOLD.j | 
. . . . . . . 8
⊢ 𝐽 =
(∏t‘(𝐴 × {𝒫 𝐴})) | 
| 15 | 11, 12, 13, 14 | efmnd 18851 | 
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (EndoFMnd‘𝐴) = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 16 | 15 | adantr 480 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → (EndoFMnd‘𝐴) = {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 17 |   | 0map0sn0 8906 | 
. . . . . . . . . . 11
⊢ (∅
↑m ∅) = {∅} | 
| 18 |   | id 22 | 
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → 𝐴 = ∅) | 
| 19 | 18, 18 | oveq12d 7430 | 
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐴) = (∅ ↑m
∅)) | 
| 20 |   | symgvalstructOLD.b | 
. . . . . . . . . . . 12
⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | 
| 21 | 7 | fveq2d 6889 | 
. . . . . . . . . . . . 13
⊢ (𝐴 = ∅ →
(Base‘𝐺) =
(Base‘(SymGrp‘∅))) | 
| 22 |   | eqid 2734 | 
. . . . . . . . . . . . . 14
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 23 | 5, 22 | symgbas 19356 | 
. . . . . . . . . . . . 13
⊢
(Base‘𝐺) =
{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | 
| 24 |   | symgbas0 19373 | 
. . . . . . . . . . . . 13
⊢
(Base‘(SymGrp‘∅)) = {∅} | 
| 25 | 21, 23, 24 | 3eqtr3g 2792 | 
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = {∅}) | 
| 26 | 20, 25 | eqtrid 2781 | 
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → 𝐵 = {∅}) | 
| 27 | 17, 19, 26 | 3eqtr4a 2795 | 
. . . . . . . . . 10
⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐴) = 𝐵) | 
| 28 | 27 | adantl 481 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → (𝐴 ↑m 𝐴) = 𝐵) | 
| 29 | 12, 28 | eqtrid 2781 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝑀 = 𝐵) | 
| 30 | 29 | opeq2d 4860 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 〈(Base‘ndx),
𝑀〉 =
〈(Base‘ndx), 𝐵〉) | 
| 31 | 30 | tpeq1d 4725 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 32 | 10, 16, 31 | 3eqtrd 2773 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 33 | 32 | ex 412 | 
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 34 | 2, 33 | sylbid 240 | 
. . 3
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 35 |   | hash1snb 14439 | 
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥})) | 
| 36 |   | snex 5416 | 
. . . . . . . 8
⊢ {𝑥} ∈ V | 
| 37 |   | eleq1 2821 | 
. . . . . . . 8
⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | 
| 38 | 36, 37 | mpbiri 258 | 
. . . . . . 7
⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) | 
| 39 | 11, 12, 13, 14 | efmnd 18851 | 
. . . . . . 7
⊢ (𝐴 ∈ V →
(EndoFMnd‘𝐴) =
{〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 40 | 38, 39 | syl 17 | 
. . . . . 6
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 41 |   | snsymgefmndeq 19379 | 
. . . . . . 7
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) | 
| 42 | 41, 5 | eqtr4di 2787 | 
. . . . . 6
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺) | 
| 43 | 42 | fveq2d 6889 | 
. . . . . . . . 9
⊢ (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺)) | 
| 44 |   | eqid 2734 | 
. . . . . . . . . . 11
⊢
(Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴)) | 
| 45 | 11, 44 | efmndbas 18852 | 
. . . . . . . . . 10
⊢
(Base‘(EndoFMnd‘𝐴)) = (𝐴 ↑m 𝐴) | 
| 46 | 45, 12 | eqtr4i 2760 | 
. . . . . . . . 9
⊢
(Base‘(EndoFMnd‘𝐴)) = 𝑀 | 
| 47 | 23, 20 | eqtr4i 2760 | 
. . . . . . . . 9
⊢
(Base‘𝐺) =
𝐵 | 
| 48 | 43, 46, 47 | 3eqtr3g 2792 | 
. . . . . . . 8
⊢ (𝐴 = {𝑥} → 𝑀 = 𝐵) | 
| 49 | 48 | opeq2d 4860 | 
. . . . . . 7
⊢ (𝐴 = {𝑥} → 〈(Base‘ndx), 𝑀〉 = 〈(Base‘ndx),
𝐵〉) | 
| 50 | 49 | tpeq1d 4725 | 
. . . . . 6
⊢ (𝐴 = {𝑥} → {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 51 | 40, 42, 50 | 3eqtr3d 2777 | 
. . . . 5
⊢ (𝐴 = {𝑥} → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 52 | 51 | exlimiv 1929 | 
. . . 4
⊢
(∃𝑥 𝐴 = {𝑥} → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 53 | 35, 52 | biimtrdi 253 | 
. . 3
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 54 |   | ssnpss 4086 | 
. . . . . . 7
⊢ ((𝐴 ↑m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴 ↑m 𝐴)) | 
| 55 | 11, 5 | symgpssefmnd 19380 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊
(Base‘(EndoFMnd‘𝐴))) | 
| 56 | 20, 23 | eqtr4i 2760 | 
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) | 
| 57 | 45 | eqcomi 2743 | 
. . . . . . . . 9
⊢ (𝐴 ↑m 𝐴) =
(Base‘(EndoFMnd‘𝐴)) | 
| 58 | 56, 57 | psseq12i 4074 | 
. . . . . . . 8
⊢ (𝐵 ⊊ (𝐴 ↑m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴))) | 
| 59 | 55, 58 | sylibr 234 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴 ↑m 𝐴)) | 
| 60 | 54, 59 | nsyl3 138 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴 ↑m 𝐴) ⊆ 𝐵) | 
| 61 |   | fvexd 6900 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V) | 
| 62 |   | f1osetex 8880 | 
. . . . . . . 8
⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ∈ V | 
| 63 | 20, 62 | eqeltri 2829 | 
. . . . . . 7
⊢ 𝐵 ∈ V | 
| 64 | 63 | a1i 11 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V) | 
| 65 | 5, 20 | symgval 19355 | 
. . . . . . 7
⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) | 
| 66 | 65, 57 | ressval2 17256 | 
. . . . . 6
⊢ ((¬
(𝐴 ↑m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉)) | 
| 67 | 60, 61, 64, 66 | syl3anc 1372 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉)) | 
| 68 |   | ovex 7445 | 
. . . . . . 7
⊢ (𝐴 ↑m 𝐴) ∈ V | 
| 69 | 68 | inex2 5298 | 
. . . . . 6
⊢ (𝐵 ∩ (𝐴 ↑m 𝐴)) ∈ V | 
| 70 |   | setsval 17185 | 
. . . . . 6
⊢
(((EndoFMnd‘𝐴)
∈ V ∧ (𝐵 ∩
(𝐴 ↑m 𝐴)) ∈ V) →
((EndoFMnd‘𝐴) sSet
〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉) =
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) | 
| 71 | 61, 69, 70 | sylancl 586 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉) = (((EndoFMnd‘𝐴) ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) | 
| 72 | 15 | adantr 480 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 73 | 72 | reseq1d 5976 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖
{(Base‘ndx)})) = ({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)}))) | 
| 74 | 73 | uneq1d 4147 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = (({〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) | 
| 75 |   | eqidd 2735 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
{〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 76 |   | fvexd 6900 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(+g‘ndx) ∈ V) | 
| 77 |   | fvexd 6900 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx)
∈ V) | 
| 78 | 12, 68 | eqeltri 2829 | 
. . . . . . . . . . 11
⊢ 𝑀 ∈ V | 
| 79 | 78, 78 | mpoex 8085 | 
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) ∈ V | 
| 80 | 13, 79 | eqeltri 2829 | 
. . . . . . . . 9
⊢  + ∈
V | 
| 81 | 80 | a1i 11 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V) | 
| 82 | 14 | fvexi 6899 | 
. . . . . . . . 9
⊢ 𝐽 ∈ V | 
| 83 | 82 | a1i 11 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V) | 
| 84 |   | basendxnplusgndx 17302 | 
. . . . . . . . . 10
⊢
(Base‘ndx) ≠ (+g‘ndx) | 
| 85 | 84 | necomi 2985 | 
. . . . . . . . 9
⊢
(+g‘ndx) ≠ (Base‘ndx) | 
| 86 | 85 | a1i 11 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(+g‘ndx) ≠ (Base‘ndx)) | 
| 87 |   | tsetndx 17367 | 
. . . . . . . . . 10
⊢
(TopSet‘ndx) = 9 | 
| 88 |   | 1re 11242 | 
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ | 
| 89 |   | 1lt9 12453 | 
. . . . . . . . . . . 12
⊢ 1 <
9 | 
| 90 | 88, 89 | gtneii 11354 | 
. . . . . . . . . . 11
⊢ 9 ≠
1 | 
| 91 |   | df-base 17229 | 
. . . . . . . . . . . 12
⊢ Base =
Slot 1 | 
| 92 |   | 1nn 12258 | 
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ | 
| 93 | 91, 92 | ndxarg 17214 | 
. . . . . . . . . . 11
⊢
(Base‘ndx) = 1 | 
| 94 | 90, 93 | neeqtrri 3004 | 
. . . . . . . . . 10
⊢ 9 ≠
(Base‘ndx) | 
| 95 | 87, 94 | eqnetri 3001 | 
. . . . . . . . 9
⊢
(TopSet‘ndx) ≠ (Base‘ndx) | 
| 96 | 95 | a1i 11 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx)
≠ (Base‘ndx)) | 
| 97 | 75, 76, 77, 81, 83, 86, 96 | tpres 7202 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) = {〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 98 | 97 | uneq1d 4147 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) =
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉})) | 
| 99 |   | uncom 4138 | 
. . . . . . . 8
⊢
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = ({〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉} ∪
{〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 100 |   | tpass 4732 | 
. . . . . . . 8
⊢
{〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} = ({〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉} ∪
{〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 101 | 99, 100 | eqtr4i 2760 | 
. . . . . . 7
⊢
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} | 
| 102 | 5, 56 | symgbasmap 19361 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐴 ↑m 𝐴)) | 
| 103 | 102 | a1i 11 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐴 ↑m 𝐴))) | 
| 104 | 103 | ssrdv 3969 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴 ↑m 𝐴)) | 
| 105 |   | dfss2 3949 | 
. . . . . . . . . 10
⊢ (𝐵 ⊆ (𝐴 ↑m 𝐴) ↔ (𝐵 ∩ (𝐴 ↑m 𝐴)) = 𝐵) | 
| 106 | 104, 105 | sylib 218 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴 ↑m 𝐴)) = 𝐵) | 
| 107 | 106 | opeq2d 4860 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉 =
〈(Base‘ndx), 𝐵〉) | 
| 108 | 107 | tpeq1d 4725 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
{〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 109 | 101, 108 | eqtrid 2781 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 110 | 74, 98, 109 | 3eqtrd 2773 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 111 | 67, 71, 110 | 3eqtrd 2773 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 112 | 111 | ex 412 | 
. . 3
⊢ (𝐴 ∈ 𝑉 → (1 < (♯‘𝐴) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 113 | 34, 53, 112 | 3jaod 1430 | 
. 2
⊢ (𝐴 ∈ 𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 114 | 1, 113 | mpd 15 | 
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |