Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pssn0 Structured version   Visualization version   GIF version

Theorem pssn0 40128
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
pssn0 (𝐴𝐵𝐵 ≠ ∅)

Proof of Theorem pssn0
StepHypRef Expression
1 npss0 4376 . . 3 ¬ 𝐴 ⊊ ∅
2 psseq2 4019 . . 3 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊊ ∅))
31, 2mtbiri 326 . 2 (𝐵 = ∅ → ¬ 𝐴𝐵)
43necon2ai 2972 1 (𝐴𝐵𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  wpss 3884  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254
This theorem is referenced by:  xppss12  40130
  Copyright terms: Public domain W3C validator