![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssn0 | Structured version Visualization version GIF version |
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
pssn0 | ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npss0 4455 | . . 3 ⊢ ¬ 𝐴 ⊊ ∅ | |
2 | psseq2 4102 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ ∅)) | |
3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐵 = ∅ → ¬ 𝐴 ⊊ 𝐵) |
4 | 3 | necon2ai 2969 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ≠ wne 2939 ⊊ wpss 3965 ∅c0 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-dif 3967 df-ss 3981 df-pss 3984 df-nul 4341 |
This theorem is referenced by: xppss12 42259 |
Copyright terms: Public domain | W3C validator |