Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssn0 | Structured version Visualization version GIF version |
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
pssn0 | ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npss0 4376 | . . 3 ⊢ ¬ 𝐴 ⊊ ∅ | |
2 | psseq2 4019 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ ∅)) | |
3 | 1, 2 | mtbiri 326 | . 2 ⊢ (𝐵 = ∅ → ¬ 𝐴 ⊊ 𝐵) |
4 | 3 | necon2ai 2972 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ⊊ wpss 3884 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 |
This theorem is referenced by: xppss12 40130 |
Copyright terms: Public domain | W3C validator |