![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssn0 | Structured version Visualization version GIF version |
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
pssn0 | ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npss0 4210 | . . 3 ⊢ ¬ 𝐴 ⊊ ∅ | |
2 | psseq2 3892 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ ∅)) | |
3 | 1, 2 | mtbiri 319 | . 2 ⊢ (𝐵 = ∅ → ¬ 𝐴 ⊊ 𝐵) |
4 | 3 | necon2ai 3000 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ≠ wne 2971 ⊊ wpss 3770 ∅c0 4115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 |
This theorem is referenced by: xppss12 38037 |
Copyright terms: Public domain | W3C validator |