Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pssn0 Structured version   Visualization version   GIF version

Theorem pssn0 42220
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
pssn0 (𝐴𝐵𝐵 ≠ ∅)

Proof of Theorem pssn0
StepHypRef Expression
1 npss0 4471 . . 3 ¬ 𝐴 ⊊ ∅
2 psseq2 4114 . . 3 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊊ ∅))
31, 2mtbiri 327 . 2 (𝐵 = ∅ → ¬ 𝐴𝐵)
43necon2ai 2976 1 (𝐴𝐵𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946  wpss 3977  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-dif 3979  df-ss 3993  df-pss 3996  df-nul 4353
This theorem is referenced by:  xppss12  42222
  Copyright terms: Public domain W3C validator