Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pssn0 Structured version   Visualization version   GIF version

Theorem pssn0 40447
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
pssn0 (𝐴𝐵𝐵 ≠ ∅)

Proof of Theorem pssn0
StepHypRef Expression
1 npss0 4391 . . 3 ¬ 𝐴 ⊊ ∅
2 psseq2 4034 . . 3 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊊ ∅))
31, 2mtbiri 326 . 2 (𝐵 = ∅ → ¬ 𝐴𝐵)
43necon2ai 2970 1 (𝐴𝐵𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2940  wpss 3898  c0 4268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-v 3443  df-dif 3900  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269
This theorem is referenced by:  xppss12  40449
  Copyright terms: Public domain W3C validator