| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pssn0 | Structured version Visualization version GIF version | ||
| Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| pssn0 | ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npss0 4419 | . . 3 ⊢ ¬ 𝐴 ⊊ ∅ | |
| 2 | psseq2 4062 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐵 = ∅ → ¬ 𝐴 ⊊ 𝐵) |
| 4 | 3 | necon2ai 2956 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2927 ⊊ wpss 3923 ∅c0 4304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-dif 3925 df-ss 3939 df-pss 3942 df-nul 4305 |
| This theorem is referenced by: xppss12 42209 |
| Copyright terms: Public domain | W3C validator |