Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssn0 | Structured version Visualization version GIF version |
Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
pssn0 | ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npss0 4391 | . . 3 ⊢ ¬ 𝐴 ⊊ ∅ | |
2 | psseq2 4034 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ ∅)) | |
3 | 1, 2 | mtbiri 326 | . 2 ⊢ (𝐵 = ∅ → ¬ 𝐴 ⊊ 𝐵) |
4 | 3 | necon2ai 2970 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2940 ⊊ wpss 3898 ∅c0 4268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 |
This theorem is referenced by: xppss12 40449 |
Copyright terms: Public domain | W3C validator |