Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psspwb Structured version   Visualization version   GIF version

Theorem psspwb 41513
Description: Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
psspwb (𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)

Proof of Theorem psspwb
StepHypRef Expression
1 sspwb 5449 . . 3 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 pweqb 5456 . . . 4 (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)
32necon3bii 2992 . . 3 (𝐴𝐵 ↔ 𝒫 𝐴 ≠ 𝒫 𝐵)
41, 3anbi12i 626 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵))
5 df-pss 3967 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
6 df-pss 3967 . 2 (𝒫 𝐴 ⊊ 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵))
74, 5, 63bitr4i 303 1 (𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wne 2939  wss 3948  wpss 3949  𝒫 cpw 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-v 3475  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-pw 4604  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator