Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psspwb Structured version   Visualization version   GIF version

Theorem psspwb 42258
Description: Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
psspwb (𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)

Proof of Theorem psspwb
StepHypRef Expression
1 sspwb 5461 . . 3 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 pweqb 5468 . . . 4 (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)
32necon3bii 2992 . . 3 (𝐴𝐵 ↔ 𝒫 𝐴 ≠ 𝒫 𝐵)
41, 3anbi12i 628 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵))
5 df-pss 3984 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
6 df-pss 3984 . 2 (𝒫 𝐴 ⊊ 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵))
74, 5, 63bitr4i 303 1 (𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wne 2939  wss 3964  wpss 3965  𝒫 cpw 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-v 3481  df-un 3969  df-ss 3981  df-pss 3984  df-pw 4608  df-sn 4633  df-pr 4635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator