Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psspwb | Structured version Visualization version GIF version |
Description: Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
psspwb | ⊢ (𝐴 ⊊ 𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwb 5359 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
2 | pweqb 5366 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 2 | necon3bii 2995 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝒫 𝐴 ≠ 𝒫 𝐵) |
4 | 1, 3 | anbi12i 626 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵)) |
5 | df-pss 3902 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
6 | df-pss 3902 | . 2 ⊢ (𝒫 𝐴 ⊊ 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |