| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psspwb | Structured version Visualization version GIF version | ||
| Description: Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| psspwb | ⊢ (𝐴 ⊊ 𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwb 5436 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 2 | pweqb 5443 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 2 | necon3bii 2983 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝒫 𝐴 ≠ 𝒫 𝐵) |
| 4 | 1, 3 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵)) |
| 5 | df-pss 3953 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 6 | df-pss 3953 | . 2 ⊢ (𝒫 𝐴 ⊊ 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐴 ≠ 𝒫 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ≠ wne 2931 ⊆ wss 3933 ⊊ wpss 3934 𝒫 cpw 4582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3466 df-un 3938 df-ss 3950 df-pss 3953 df-pw 4584 df-sn 4609 df-pr 4611 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |