Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppss12 Structured version   Visualization version   GIF version

Theorem xppss12 40204
Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
xppss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))

Proof of Theorem xppss12
StepHypRef Expression
1 pssss 4030 . . 3 (𝐴𝐵𝐴𝐵)
2 pssss 4030 . . 3 (𝐶𝐷𝐶𝐷)
3 xpss12 5604 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
41, 2, 3syl2an 596 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
5 simpl 483 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
6 pssne 4031 . . . . . 6 (𝐴𝐵𝐴𝐵)
76necomd 2999 . . . . 5 (𝐴𝐵𝐵𝐴)
8 neneq 2949 . . . . . 6 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
98intnanrd 490 . . . . 5 (𝐵𝐴 → ¬ (𝐵 = 𝐴𝐷 = 𝐶))
105, 7, 93syl 18 . . . 4 ((𝐴𝐵𝐶𝐷) → ¬ (𝐵 = 𝐴𝐷 = 𝐶))
11 pssn0 40202 . . . . 5 (𝐴𝐵𝐵 ≠ ∅)
12 pssn0 40202 . . . . 5 (𝐶𝐷𝐷 ≠ ∅)
13 xp11 6078 . . . . 5 ((𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴𝐷 = 𝐶)))
1411, 12, 13syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴𝐷 = 𝐶)))
1510, 14mtbird 325 . . 3 ((𝐴𝐵𝐶𝐷) → ¬ (𝐵 × 𝐷) = (𝐴 × 𝐶))
16 neqne 2951 . . . 4 (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐵 × 𝐷) ≠ (𝐴 × 𝐶))
1716necomd 2999 . . 3 (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))
1815, 17syl 17 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))
19 df-pss 3906 . 2 ((𝐴 × 𝐶) ⊊ (𝐵 × 𝐷) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐷) ∧ (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)))
204, 18, 19sylanbrc 583 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wne 2943  wss 3887  wpss 3888  c0 4256   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator