Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xppss12 | Structured version Visualization version GIF version |
Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
xppss12 | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 3986 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | pssss 3986 | . . 3 ⊢ (𝐶 ⊊ 𝐷 → 𝐶 ⊆ 𝐷) | |
3 | xpss12 5540 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2an 599 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
5 | simpl 486 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → 𝐴 ⊊ 𝐵) | |
6 | pssne 3987 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | |
7 | 6 | necomd 2989 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ 𝐴) |
8 | neneq 2940 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 → ¬ 𝐵 = 𝐴) | |
9 | 8 | intnanrd 493 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
10 | 5, 7, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
11 | pssn0 39784 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) | |
12 | pssn0 39784 | . . . . 5 ⊢ (𝐶 ⊊ 𝐷 → 𝐷 ≠ ∅) | |
13 | xp11 6007 | . . . . 5 ⊢ ((𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) | |
14 | 11, 12, 13 | syl2an 599 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) |
15 | 10, 14 | mtbird 328 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 × 𝐷) = (𝐴 × 𝐶)) |
16 | neqne 2942 | . . . 4 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐵 × 𝐷) ≠ (𝐴 × 𝐶)) | |
17 | 16 | necomd 2989 | . . 3 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
19 | df-pss 3862 | . 2 ⊢ ((𝐴 × 𝐶) ⊊ (𝐵 × 𝐷) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐷) ∧ (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))) | |
20 | 4, 18, 19 | sylanbrc 586 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ≠ wne 2934 ⊆ wss 3843 ⊊ wpss 3844 ∅c0 4211 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |