| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xppss12 | Structured version Visualization version GIF version | ||
| Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| xppss12 | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssss 4047 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | pssss 4047 | . . 3 ⊢ (𝐶 ⊊ 𝐷 → 𝐶 ⊆ 𝐷) | |
| 3 | xpss12 5634 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → 𝐴 ⊊ 𝐵) | |
| 6 | pssne 4048 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | |
| 7 | 6 | necomd 2984 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ 𝐴) |
| 8 | neneq 2935 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 → ¬ 𝐵 = 𝐴) | |
| 9 | 8 | intnanrd 489 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
| 10 | 5, 7, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
| 11 | pssn0 42345 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) | |
| 12 | pssn0 42345 | . . . . 5 ⊢ (𝐶 ⊊ 𝐷 → 𝐷 ≠ ∅) | |
| 13 | xp11 6127 | . . . . 5 ⊢ ((𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) |
| 15 | 10, 14 | mtbird 325 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 × 𝐷) = (𝐴 × 𝐶)) |
| 16 | neqne 2937 | . . . 4 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐵 × 𝐷) ≠ (𝐴 × 𝐶)) | |
| 17 | 16 | necomd 2984 | . . 3 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
| 18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
| 19 | df-pss 3918 | . 2 ⊢ ((𝐴 × 𝐶) ⊊ (𝐵 × 𝐷) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐷) ∧ (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))) | |
| 20 | 4, 18, 19 | sylanbrc 583 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2929 ⊆ wss 3898 ⊊ wpss 3899 ∅c0 4282 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |