Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xppss12 | Structured version Visualization version GIF version |
Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
xppss12 | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 4026 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | pssss 4026 | . . 3 ⊢ (𝐶 ⊊ 𝐷 → 𝐶 ⊆ 𝐷) | |
3 | xpss12 5595 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → 𝐴 ⊊ 𝐵) | |
6 | pssne 4027 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | |
7 | 6 | necomd 2998 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ 𝐴) |
8 | neneq 2948 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 → ¬ 𝐵 = 𝐴) | |
9 | 8 | intnanrd 489 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
10 | 5, 7, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶)) |
11 | pssn0 40128 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) | |
12 | pssn0 40128 | . . . . 5 ⊢ (𝐶 ⊊ 𝐷 → 𝐷 ≠ ∅) | |
13 | xp11 6067 | . . . . 5 ⊢ ((𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) | |
14 | 11, 12, 13 | syl2an 595 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐷 = 𝐶))) |
15 | 10, 14 | mtbird 324 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → ¬ (𝐵 × 𝐷) = (𝐴 × 𝐶)) |
16 | neqne 2950 | . . . 4 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐵 × 𝐷) ≠ (𝐴 × 𝐶)) | |
17 | 16 | necomd 2998 | . . 3 ⊢ (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)) |
19 | df-pss 3902 | . 2 ⊢ ((𝐴 × 𝐶) ⊊ (𝐵 × 𝐷) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐷) ∧ (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))) | |
20 | 4, 18, 19 | sylanbrc 582 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 ∅c0 4253 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |