MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssn2lp Structured version   Visualization version   GIF version

Theorem pssn2lp 4036
Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
pssn2lp ¬ (𝐴𝐵𝐵𝐴)

Proof of Theorem pssn2lp
StepHypRef Expression
1 dfpss3 4021 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
21simprbi 497 . . 3 (𝐴𝐵 → ¬ 𝐵𝐴)
3 pssss 4030 . . 3 (𝐵𝐴𝐵𝐴)
42, 3nsyl 140 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
5 imnan 400 . 2 ((𝐴𝐵 → ¬ 𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
64, 5mpbi 229 1 ¬ (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-in 3894  df-ss 3904  df-pss 3906
This theorem is referenced by:  psstr  4039  cvnsym  30652
  Copyright terms: Public domain W3C validator