| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssn2lp | Structured version Visualization version GIF version | ||
| Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| pssn2lp | ⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss3 4038 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊆ 𝐴) |
| 3 | pssss 4047 | . . 3 ⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) | |
| 4 | 2, 3 | nsyl 140 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
| 5 | imnan 399 | . 2 ⊢ ((𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊊ 𝐴) ↔ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴)) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊆ wss 3898 ⊊ wpss 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 df-ss 3915 df-pss 3918 |
| This theorem is referenced by: psstr 4056 cvnsym 32272 |
| Copyright terms: Public domain | W3C validator |