HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnsym Structured version   Visualization version   GIF version

Theorem cvnsym 30652
Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnsym ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))

Proof of Theorem cvnsym
StepHypRef Expression
1 cvpss 30647 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
2 cvpss 30647 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝐴𝐵𝐴))
32ancoms 459 . . . 4 ((𝐴C𝐵C ) → (𝐵 𝐴𝐵𝐴))
4 pssn2lp 4036 . . . . 5 ¬ (𝐵𝐴𝐴𝐵)
54imnani 401 . . . 4 (𝐵𝐴 → ¬ 𝐴𝐵)
63, 5syl6 35 . . 3 ((𝐴C𝐵C ) → (𝐵 𝐴 → ¬ 𝐴𝐵))
76con2d 134 . 2 ((𝐴C𝐵C ) → (𝐴𝐵 → ¬ 𝐵 𝐴))
81, 7syld 47 1 ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wpss 3888   class class class wbr 5074   C cch 29291   ccv 29326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cv 30641
This theorem is referenced by:  cvnref  30653
  Copyright terms: Public domain W3C validator