![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnsym | Structured version Visualization version GIF version |
Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnsym | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvpss 32043 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
2 | cvpss 32043 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → 𝐵 ⊊ 𝐴)) | |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → 𝐵 ⊊ 𝐴)) |
4 | pssn2lp 4096 | . . . . 5 ⊢ ¬ (𝐵 ⊊ 𝐴 ∧ 𝐴 ⊊ 𝐵) | |
5 | 4 | imnani 400 | . . . 4 ⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 ⊊ 𝐵) |
6 | 3, 5 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → ¬ 𝐴 ⊊ 𝐵)) |
7 | 6 | con2d 134 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
8 | 1, 7 | syld 47 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2098 ⊊ wpss 3944 class class class wbr 5141 Cℋ cch 30687 ⋖ℋ ccv 30722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-cv 32037 |
This theorem is referenced by: cvnref 32049 |
Copyright terms: Public domain | W3C validator |