| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnsym | Structured version Visualization version GIF version | ||
| Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnsym | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvpss 32260 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
| 2 | cvpss 32260 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → 𝐵 ⊊ 𝐴)) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → 𝐵 ⊊ 𝐴)) |
| 4 | pssn2lp 4054 | . . . . 5 ⊢ ¬ (𝐵 ⊊ 𝐴 ∧ 𝐴 ⊊ 𝐵) | |
| 5 | 4 | imnani 400 | . . . 4 ⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 ⊊ 𝐵) |
| 6 | 3, 5 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐴 → ¬ 𝐴 ⊊ 𝐵)) |
| 7 | 6 | con2d 134 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
| 8 | 1, 7 | syld 47 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ⊊ wpss 3903 class class class wbr 5091 Cℋ cch 30904 ⋖ℋ ccv 30939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cv 32254 |
| This theorem is referenced by: cvnref 32266 |
| Copyright terms: Public domain | W3C validator |