HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnsym Structured version   Visualization version   GIF version

Theorem cvnsym 32265
Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnsym ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))

Proof of Theorem cvnsym
StepHypRef Expression
1 cvpss 32260 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
2 cvpss 32260 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝐴𝐵𝐴))
32ancoms 458 . . . 4 ((𝐴C𝐵C ) → (𝐵 𝐴𝐵𝐴))
4 pssn2lp 4054 . . . . 5 ¬ (𝐵𝐴𝐴𝐵)
54imnani 400 . . . 4 (𝐵𝐴 → ¬ 𝐴𝐵)
63, 5syl6 35 . . 3 ((𝐴C𝐵C ) → (𝐵 𝐴 → ¬ 𝐴𝐵))
76con2d 134 . 2 ((𝐴C𝐵C ) → (𝐴𝐵 → ¬ 𝐵 𝐴))
81, 7syld 47 1 ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wpss 3903   class class class wbr 5091   C cch 30904   ccv 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cv 32254
This theorem is referenced by:  cvnref  32266
  Copyright terms: Public domain W3C validator