HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnsym Structured version   Visualization version   GIF version

Theorem cvnsym 30553
Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnsym ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))

Proof of Theorem cvnsym
StepHypRef Expression
1 cvpss 30548 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
2 cvpss 30548 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝐴𝐵𝐴))
32ancoms 458 . . . 4 ((𝐴C𝐵C ) → (𝐵 𝐴𝐵𝐴))
4 pssn2lp 4032 . . . . 5 ¬ (𝐵𝐴𝐴𝐵)
54imnani 400 . . . 4 (𝐵𝐴 → ¬ 𝐴𝐵)
63, 5syl6 35 . . 3 ((𝐴C𝐵C ) → (𝐵 𝐴 → ¬ 𝐴𝐵))
76con2d 134 . 2 ((𝐴C𝐵C ) → (𝐴𝐵 → ¬ 𝐵 𝐴))
81, 7syld 47 1 ((𝐴C𝐵C ) → (𝐴 𝐵 → ¬ 𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wpss 3884   class class class wbr 5070   C cch 29192   ccv 29227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cv 30542
This theorem is referenced by:  cvnref  30554
  Copyright terms: Public domain W3C validator