Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssirr | Structured version Visualization version GIF version |
Description: Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
pssirr | ⊢ ¬ 𝐴 ⊊ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 406 | . 2 ⊢ ¬ (𝐴 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐴) | |
2 | dfpss3 4018 | . 2 ⊢ (𝐴 ⊊ 𝐴 ↔ (𝐴 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mtbir 326 | 1 ⊢ ¬ 𝐴 ⊊ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ⊆ wss 3884 ⊊ wpss 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-in 3891 df-ss 3901 df-pss 3903 |
This theorem is referenced by: porpss 7555 ltsopr 10694 |
Copyright terms: Public domain | W3C validator |