| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3937 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2926 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3937 |
| This theorem is referenced by: pssssd 4066 sspss 4068 pssn2lp 4070 psstr 4073 brrpssg 7704 pssnn 9138 php 9177 php2 9178 php3 9179 findcard3 9236 findcard3OLD 9237 marypha1lem 9391 infpssr 10268 fin4en1 10269 ssfin4 10270 fin23lem34 10306 npex 10946 elnp 10947 suplem1pr 11012 lsmcv 21058 islbs3 21072 obslbs 21646 spansncvi 31588 chrelati 32300 atcvatlem 32321 satfun 35405 fundmpss 35761 dfon2lem6 35783 finminlem 36313 fvineqsneq 37407 pssexg 42221 xppss12 42224 psshepw 43784 |
| Copyright terms: Public domain | W3C validator |