Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version |
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3902 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-pss 3902 |
This theorem is referenced by: pssssd 4028 sspss 4030 pssn2lp 4032 psstr 4035 brrpssg 7556 php 8897 php2 8898 php3 8899 pssnn 8913 pssnnOLD 8969 findcard3 8987 marypha1lem 9122 infpssr 9995 fin4en1 9996 ssfin4 9997 fin23lem34 10033 npex 10673 elnp 10674 suplem1pr 10739 lsmcv 20318 islbs3 20332 obslbs 20847 spansncvi 29915 chrelati 30627 atcvatlem 30648 satfun 33273 fundmpss 33646 dfon2lem6 33670 finminlem 34434 fvineqsneq 35510 pssexg 40127 xppss12 40130 psshepw 41285 |
Copyright terms: Public domain | W3C validator |