MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4026
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3902 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 497 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2942  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-pss 3902
This theorem is referenced by:  pssssd  4028  sspss  4030  pssn2lp  4032  psstr  4035  brrpssg  7556  php  8897  php2  8898  php3  8899  pssnn  8913  pssnnOLD  8969  findcard3  8987  marypha1lem  9122  infpssr  9995  fin4en1  9996  ssfin4  9997  fin23lem34  10033  npex  10673  elnp  10674  suplem1pr  10739  lsmcv  20318  islbs3  20332  obslbs  20847  spansncvi  29915  chrelati  30627  atcvatlem  30648  satfun  33273  fundmpss  33646  dfon2lem6  33670  finminlem  34434  fvineqsneq  35510  pssexg  40127  xppss12  40130  psshepw  41285
  Copyright terms: Public domain W3C validator