![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version |
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3996 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3996 |
This theorem is referenced by: pssssd 4123 sspss 4125 pssn2lp 4127 psstr 4130 brrpssg 7760 pssnn 9234 php 9273 php2 9274 php3 9275 phpOLD 9285 php2OLD 9286 php3OLD 9287 findcard3 9346 findcard3OLD 9347 marypha1lem 9502 infpssr 10377 fin4en1 10378 ssfin4 10379 fin23lem34 10415 npex 11055 elnp 11056 suplem1pr 11121 lsmcv 21166 islbs3 21180 obslbs 21773 spansncvi 31684 chrelati 32396 atcvatlem 32417 satfun 35379 fundmpss 35730 dfon2lem6 35752 finminlem 36284 fvineqsneq 37378 pssexg 42219 xppss12 42222 psshepw 43750 |
Copyright terms: Public domain | W3C validator |