MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4061
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3934 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 497 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2925  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3934
This theorem is referenced by:  pssssd  4063  sspss  4065  pssn2lp  4067  psstr  4070  brrpssg  7701  pssnn  9132  php  9171  php2  9172  php3  9173  findcard3  9229  findcard3OLD  9230  marypha1lem  9384  infpssr  10261  fin4en1  10262  ssfin4  10263  fin23lem34  10299  npex  10939  elnp  10940  suplem1pr  11005  lsmcv  21051  islbs3  21065  obslbs  21639  spansncvi  31581  chrelati  32293  atcvatlem  32314  satfun  35398  fundmpss  35754  dfon2lem6  35776  finminlem  36306  fvineqsneq  37400  pssexg  42214  xppss12  42217  psshepw  43777
  Copyright terms: Public domain W3C validator