![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version |
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3983 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2938 ⊆ wss 3963 ⊊ wpss 3964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3983 |
This theorem is referenced by: pssssd 4110 sspss 4112 pssn2lp 4114 psstr 4117 brrpssg 7744 pssnn 9207 php 9245 php2 9246 php3 9247 phpOLD 9257 php2OLD 9258 php3OLD 9259 findcard3 9316 findcard3OLD 9317 marypha1lem 9471 infpssr 10346 fin4en1 10347 ssfin4 10348 fin23lem34 10384 npex 11024 elnp 11025 suplem1pr 11090 lsmcv 21161 islbs3 21175 obslbs 21768 spansncvi 31681 chrelati 32393 atcvatlem 32414 satfun 35396 fundmpss 35748 dfon2lem6 35770 finminlem 36301 fvineqsneq 37395 pssexg 42244 xppss12 42247 psshepw 43778 |
Copyright terms: Public domain | W3C validator |