MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4096
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3968 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 499 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2941  wss 3949  wpss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-pss 3968
This theorem is referenced by:  pssssd  4098  sspss  4100  pssn2lp  4102  psstr  4105  brrpssg  7715  pssnn  9168  php  9210  php2  9211  php3  9212  phpOLD  9222  php2OLD  9223  php3OLD  9224  pssnnOLD  9265  findcard3  9285  findcard3OLD  9286  marypha1lem  9428  infpssr  10303  fin4en1  10304  ssfin4  10305  fin23lem34  10341  npex  10981  elnp  10982  suplem1pr  11047  lsmcv  20754  islbs3  20768  obslbs  21285  spansncvi  30905  chrelati  31617  atcvatlem  31638  satfun  34402  fundmpss  34738  dfon2lem6  34760  finminlem  35203  fvineqsneq  36293  pssexg  41044  xppss12  41047  psshepw  42539
  Copyright terms: Public domain W3C validator