MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4121
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3996 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 497 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2946  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3996
This theorem is referenced by:  pssssd  4123  sspss  4125  pssn2lp  4127  psstr  4130  brrpssg  7760  pssnn  9234  php  9273  php2  9274  php3  9275  phpOLD  9285  php2OLD  9286  php3OLD  9287  findcard3  9346  findcard3OLD  9347  marypha1lem  9502  infpssr  10377  fin4en1  10378  ssfin4  10379  fin23lem34  10415  npex  11055  elnp  11056  suplem1pr  11121  lsmcv  21166  islbs3  21180  obslbs  21773  spansncvi  31684  chrelati  32396  atcvatlem  32417  satfun  35379  fundmpss  35730  dfon2lem6  35752  finminlem  36284  fvineqsneq  37378  pssexg  42219  xppss12  42222  psshepw  43750
  Copyright terms: Public domain W3C validator