| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3934 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2925 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3934 |
| This theorem is referenced by: pssssd 4063 sspss 4065 pssn2lp 4067 psstr 4070 brrpssg 7701 pssnn 9132 php 9171 php2 9172 php3 9173 findcard3 9229 findcard3OLD 9230 marypha1lem 9384 infpssr 10261 fin4en1 10262 ssfin4 10263 fin23lem34 10299 npex 10939 elnp 10940 suplem1pr 11005 lsmcv 21051 islbs3 21065 obslbs 21639 spansncvi 31581 chrelati 32293 atcvatlem 32314 satfun 35398 fundmpss 35754 dfon2lem6 35776 finminlem 36306 fvineqsneq 37400 pssexg 42214 xppss12 42217 psshepw 43777 |
| Copyright terms: Public domain | W3C validator |