| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3923 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2925 ⊆ wss 3903 ⊊ wpss 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3923 |
| This theorem is referenced by: pssssd 4051 sspss 4053 pssn2lp 4055 psstr 4058 brrpssg 7661 pssnn 9082 php 9121 php2 9122 php3 9123 findcard3 9172 marypha1lem 9323 infpssr 10202 fin4en1 10203 ssfin4 10204 fin23lem34 10240 npex 10880 elnp 10881 suplem1pr 10946 lsmcv 21048 islbs3 21062 obslbs 21637 spansncvi 31596 chrelati 32308 atcvatlem 32329 satfun 35384 fundmpss 35740 dfon2lem6 35762 finminlem 36292 fvineqsneq 37386 pssexg 42199 xppss12 42202 psshepw 43761 |
| Copyright terms: Public domain | W3C validator |