Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version |
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3906 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2943 ⊆ wss 3887 ⊊ wpss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-pss 3906 |
This theorem is referenced by: pssssd 4032 sspss 4034 pssn2lp 4036 psstr 4039 brrpssg 7578 pssnn 8951 php 8993 php2 8994 php3 8995 phpOLD 9005 php2OLD 9006 php3OLD 9007 pssnnOLD 9040 findcard3 9057 marypha1lem 9192 infpssr 10064 fin4en1 10065 ssfin4 10066 fin23lem34 10102 npex 10742 elnp 10743 suplem1pr 10808 lsmcv 20403 islbs3 20417 obslbs 20937 spansncvi 30014 chrelati 30726 atcvatlem 30747 satfun 33373 fundmpss 33740 dfon2lem6 33764 finminlem 34507 fvineqsneq 35583 pssexg 40201 xppss12 40204 psshepw 41396 |
Copyright terms: Public domain | W3C validator |