| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3931 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2925 ⊆ wss 3911 ⊊ wpss 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3931 |
| This theorem is referenced by: pssssd 4059 sspss 4061 pssn2lp 4063 psstr 4066 brrpssg 7681 pssnn 9109 php 9148 php2 9149 php3 9150 findcard3 9205 findcard3OLD 9206 marypha1lem 9360 infpssr 10237 fin4en1 10238 ssfin4 10239 fin23lem34 10275 npex 10915 elnp 10916 suplem1pr 10981 lsmcv 21027 islbs3 21041 obslbs 21615 spansncvi 31554 chrelati 32266 atcvatlem 32287 satfun 35371 fundmpss 35727 dfon2lem6 35749 finminlem 36279 fvineqsneq 37373 pssexg 42187 xppss12 42190 psshepw 43750 |
| Copyright terms: Public domain | W3C validator |