| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3917 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2928 ⊆ wss 3897 ⊊ wpss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3917 |
| This theorem is referenced by: pssssd 4045 sspss 4047 pssn2lp 4049 psstr 4052 brrpssg 7653 pssnn 9073 php 9111 php2 9112 php3 9113 findcard3 9162 marypha1lem 9312 infpssr 10194 fin4en1 10195 ssfin4 10196 fin23lem34 10232 npex 10872 elnp 10873 suplem1pr 10938 lsmcv 21073 islbs3 21087 obslbs 21662 spansncvi 31624 chrelati 32336 atcvatlem 32357 satfun 35447 fundmpss 35803 dfon2lem6 35822 finminlem 36352 fvineqsneq 37446 pssexg 42259 xppss12 42262 psshepw 43821 |
| Copyright terms: Public domain | W3C validator |