| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssss | Structured version Visualization version GIF version | ||
| Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssss | ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3946 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3946 |
| This theorem is referenced by: pssssd 4075 sspss 4077 pssn2lp 4079 psstr 4082 brrpssg 7719 pssnn 9182 php 9221 php2 9222 php3 9223 phpOLD 9231 php2OLD 9232 php3OLD 9233 findcard3 9290 findcard3OLD 9291 marypha1lem 9445 infpssr 10322 fin4en1 10323 ssfin4 10324 fin23lem34 10360 npex 11000 elnp 11001 suplem1pr 11066 lsmcv 21102 islbs3 21116 obslbs 21690 spansncvi 31633 chrelati 32345 atcvatlem 32366 satfun 35433 fundmpss 35784 dfon2lem6 35806 finminlem 36336 fvineqsneq 37430 pssexg 42277 xppss12 42280 psshepw 43812 |
| Copyright terms: Public domain | W3C validator |