MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4030
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3906 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 498 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2943  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-pss 3906
This theorem is referenced by:  pssssd  4032  sspss  4034  pssn2lp  4036  psstr  4039  brrpssg  7578  pssnn  8951  php  8993  php2  8994  php3  8995  phpOLD  9005  php2OLD  9006  php3OLD  9007  pssnnOLD  9040  findcard3  9057  marypha1lem  9192  infpssr  10064  fin4en1  10065  ssfin4  10066  fin23lem34  10102  npex  10742  elnp  10743  suplem1pr  10808  lsmcv  20403  islbs3  20417  obslbs  20937  spansncvi  30014  chrelati  30726  atcvatlem  30747  satfun  33373  fundmpss  33740  dfon2lem6  33764  finminlem  34507  fvineqsneq  35583  pssexg  40201  xppss12  40204  psshepw  41396
  Copyright terms: Public domain W3C validator