MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssss Structured version   Visualization version   GIF version

Theorem pssss 4043
Description: A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssss (𝐴𝐵𝐴𝐵)

Proof of Theorem pssss
StepHypRef Expression
1 df-pss 3917 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
21simplbi 497 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2928  wss 3897  wpss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3917
This theorem is referenced by:  pssssd  4045  sspss  4047  pssn2lp  4049  psstr  4052  brrpssg  7653  pssnn  9073  php  9111  php2  9112  php3  9113  findcard3  9162  marypha1lem  9312  infpssr  10194  fin4en1  10195  ssfin4  10196  fin23lem34  10232  npex  10872  elnp  10873  suplem1pr  10938  lsmcv  21073  islbs3  21087  obslbs  21662  spansncvi  31624  chrelati  32336  atcvatlem  32357  satfun  35447  fundmpss  35803  dfon2lem6  35822  finminlem  36352  fvineqsneq  37446  pssexg  42259  xppss12  42262  psshepw  43821
  Copyright terms: Public domain W3C validator