Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssned | Structured version Visualization version GIF version |
Description: Proper subclasses are unequal. Deduction form of pssne 4027. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssne 4027 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2942 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-pss 3902 |
This theorem is referenced by: omsucne 7706 ackbij1lem15 9921 canthnumlem 10335 canthp1lem2 10340 mrieqv2d 17265 slwpss 19132 topdifinffinlem 35445 lsatssn0 36943 islshpcv 36994 lkrpssN 37104 |
Copyright terms: Public domain | W3C validator |