MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssned Structured version   Visualization version   GIF version

Theorem pssned 4051
Description: Proper subclasses are unequal. Deduction form of pssne 4049. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssned (𝜑𝐴𝐵)

Proof of Theorem pssned
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssne 4049 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2928  wpss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3922
This theorem is referenced by:  omsucne  7815  ackbij1lem15  10121  canthnumlem  10536  canthp1lem2  10541  mrieqv2d  17542  slwpss  19522  hashpss  32786  topdifinffinlem  37380  lsatssn0  39040  islshpcv  39091  lkrpssN  39201
  Copyright terms: Public domain W3C validator