MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssned Structured version   Visualization version   GIF version

Theorem pssned 4029
Description: Proper subclasses are unequal. Deduction form of pssne 4027. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssned (𝜑𝐴𝐵)

Proof of Theorem pssned
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssne 4027 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2942  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-pss 3902
This theorem is referenced by:  omsucne  7706  ackbij1lem15  9921  canthnumlem  10335  canthp1lem2  10340  mrieqv2d  17265  slwpss  19132  topdifinffinlem  35445  lsatssn0  36943  islshpcv  36994  lkrpssN  37104
  Copyright terms: Public domain W3C validator