| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssned | Structured version Visualization version GIF version | ||
| Description: Proper subclasses are unequal. Deduction form of pssne 4074. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssne 4074 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2932 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3946 |
| This theorem is referenced by: omsucne 7880 ackbij1lem15 10247 canthnumlem 10662 canthp1lem2 10667 mrieqv2d 17651 slwpss 19593 hashpss 32788 topdifinffinlem 37365 lsatssn0 39020 islshpcv 39071 lkrpssN 39181 |
| Copyright terms: Public domain | W3C validator |