MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4125
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4111 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 862 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4121 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 4067 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 856 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 846   = wceq 1537  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993  df-pss 3996
This theorem is referenced by:  sspsstri  4128  sspsstr  4131  psssstr  4132  ordsseleq  6424  sorpssuni  7767  sorpssint  7768  ssnnfi  9235  ssnnfiOLD  9236  ackbij1b  10307  fin23lem40  10420  zorng  10573  psslinpr  11100  suplem2pr  11122  ressval3d  17305  ressval3dOLD  17306  mrissmrcd  17698  pgpssslw  19656  pgpfac1lem5  20123  idnghm  24785  slelss  27964  dfon2lem4  35750  finminlem  36284  lkrss2N  39125  dvh3dim3N  41406  ordsssucb  43297
  Copyright terms: Public domain W3C validator