MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4065
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4051 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 863 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4061 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 4005 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 857 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1540  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3931  df-pss 3934
This theorem is referenced by:  sspsstri  4068  sspsstr  4071  psssstr  4072  ordsseleq  6361  sorpssuni  7708  sorpssint  7709  ssnnfi  9133  ackbij1b  10191  fin23lem40  10304  zorng  10457  psslinpr  10984  suplem2pr  11006  ressval3d  17216  mrissmrcd  17601  pgpssslw  19544  pgpfac1lem5  20011  idnghm  24631  slelss  27820  dfon2lem4  35774  finminlem  36306  lkrss2N  39162  dvh3dim3N  41443  ordsssucb  43324
  Copyright terms: Public domain W3C validator