MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4075
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4061 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 863 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4071 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 4015 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 857 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1539  wss 3924  wpss 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-cleq 2726  df-ne 2932  df-ss 3941  df-pss 3944
This theorem is referenced by:  sspsstri  4078  sspsstr  4081  psssstr  4082  ordsseleq  6378  sorpssuni  7720  sorpssint  7721  ssnnfi  9177  ackbij1b  10244  fin23lem40  10357  zorng  10510  psslinpr  11037  suplem2pr  11059  ressval3d  17252  mrissmrcd  17637  pgpssslw  19580  pgpfac1lem5  20047  idnghm  24667  slelss  27849  dfon2lem4  35725  finminlem  36257  lkrss2N  39108  dvh3dim3N  41389  ordsssucb  43284
  Copyright terms: Public domain W3C validator