Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version |
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
Ref | Expression |
---|---|
sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 4016 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
2 | 1 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
4 | 3 | orrd 859 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
5 | pssss 4026 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
6 | eqimss 3973 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | 5, 6 | jaoi 853 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
8 | 4, 7 | impbii 208 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 = wceq 1539 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: sspsstri 4033 sspsstr 4036 psssstr 4037 ordsseleq 6280 sorpssuni 7563 sorpssint 7564 ssnnfi 8914 ssnnfiOLD 8915 ackbij1b 9926 fin23lem40 10038 zorng 10191 psslinpr 10718 suplem2pr 10740 ressval3d 16882 ressval3dOLD 16883 mrissmrcd 17266 pgpssslw 19134 pgpfac1lem5 19597 idnghm 23813 dfon2lem4 33668 finminlem 34434 lkrss2N 37110 dvh3dim3N 39390 |
Copyright terms: Public domain | W3C validator |