MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4053
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4039 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 863 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4049 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 3994 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 857 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1540  wss 3903  wpss 3904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3920  df-pss 3923
This theorem is referenced by:  sspsstri  4056  sspsstr  4059  psssstr  4060  ordsseleq  6336  sorpssuni  7668  sorpssint  7669  ssnnfi  9083  ackbij1b  10132  fin23lem40  10245  zorng  10398  psslinpr  10925  suplem2pr  10947  ressval3d  17157  mrissmrcd  17546  pgpssslw  19493  pgpfac1lem5  19960  idnghm  24629  slelss  27823  dfon2lem4  35770  finminlem  36302  lkrss2N  39158  dvh3dim3N  41438  ordsssucb  43318
  Copyright terms: Public domain W3C validator