Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version |
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
Ref | Expression |
---|---|
sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 4020 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
2 | 1 | simplbi2 501 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
4 | 3 | orrd 860 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
5 | pssss 4030 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
6 | eqimss 3977 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | 5, 6 | jaoi 854 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
8 | 4, 7 | impbii 208 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 = wceq 1539 ⊆ wss 3887 ⊊ wpss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-in 3894 df-ss 3904 df-pss 3906 |
This theorem is referenced by: sspsstri 4037 sspsstr 4040 psssstr 4041 ordsseleq 6295 sorpssuni 7585 sorpssint 7586 ssnnfi 8952 ssnnfiOLD 8953 ackbij1b 9995 fin23lem40 10107 zorng 10260 psslinpr 10787 suplem2pr 10809 ressval3d 16956 ressval3dOLD 16957 mrissmrcd 17349 pgpssslw 19219 pgpfac1lem5 19682 idnghm 23907 dfon2lem4 33762 finminlem 34507 lkrss2N 37183 dvh3dim3N 39463 |
Copyright terms: Public domain | W3C validator |