| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version | ||
| Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
| Ref | Expression |
|---|---|
| sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4035 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | 1 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
| 3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
| 4 | 3 | orrd 863 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| 5 | pssss 4045 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 6 | eqimss 3988 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1541 ⊆ wss 3897 ⊊ wpss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-cleq 2723 df-ne 2929 df-ss 3914 df-pss 3917 |
| This theorem is referenced by: sspsstri 4052 sspsstr 4055 psssstr 4056 ordsseleq 6335 sorpssuni 7665 sorpssint 7666 ssnnfi 9079 ackbij1b 10129 fin23lem40 10242 zorng 10395 psslinpr 10922 suplem2pr 10944 ressval3d 17157 mrissmrcd 17546 pgpssslw 19526 pgpfac1lem5 19993 idnghm 24658 slelss 27854 dfon2lem4 35828 finminlem 36362 lkrss2N 39278 dvh3dim3N 41558 ordsssucb 43438 |
| Copyright terms: Public domain | W3C validator |