| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version | ||
| Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
| Ref | Expression |
|---|---|
| sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4039 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | 1 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
| 3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
| 4 | 3 | orrd 863 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| 5 | pssss 4049 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 6 | eqimss 3994 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ⊆ wss 3903 ⊊ wpss 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3920 df-pss 3923 |
| This theorem is referenced by: sspsstri 4056 sspsstr 4059 psssstr 4060 ordsseleq 6336 sorpssuni 7668 sorpssint 7669 ssnnfi 9083 ackbij1b 10132 fin23lem40 10245 zorng 10398 psslinpr 10925 suplem2pr 10947 ressval3d 17157 mrissmrcd 17546 pgpssslw 19493 pgpfac1lem5 19960 idnghm 24629 slelss 27823 dfon2lem4 35770 finminlem 36302 lkrss2N 39158 dvh3dim3N 41438 ordsssucb 43318 |
| Copyright terms: Public domain | W3C validator |