MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4082
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4068 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 863 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4078 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 4022 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 857 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1540  wss 3931  wpss 3932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-cleq 2728  df-ne 2934  df-ss 3948  df-pss 3951
This theorem is referenced by:  sspsstri  4085  sspsstr  4088  psssstr  4089  ordsseleq  6386  sorpssuni  7731  sorpssint  7732  ssnnfi  9188  ackbij1b  10257  fin23lem40  10370  zorng  10523  psslinpr  11050  suplem2pr  11072  ressval3d  17272  mrissmrcd  17657  pgpssslw  19600  pgpfac1lem5  20067  idnghm  24687  slelss  27877  dfon2lem4  35809  finminlem  36341  lkrss2N  39192  dvh3dim3N  41473  ordsssucb  43326
  Copyright terms: Public domain W3C validator