MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4044
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4030 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 501 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 860 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4040 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 3986 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 854 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 208 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   = wceq 1540  wss 3896  wpss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-v 3442  df-in 3903  df-ss 3913  df-pss 3915
This theorem is referenced by:  sspsstri  4047  sspsstr  4050  psssstr  4051  ordsseleq  6317  sorpssuni  7626  sorpssint  7627  ssnnfi  9012  ssnnfiOLD  9013  ackbij1b  10074  fin23lem40  10186  zorng  10339  psslinpr  10866  suplem2pr  10888  ressval3d  17030  ressval3dOLD  17031  mrissmrcd  17423  pgpssslw  19292  pgpfac1lem5  19754  idnghm  23987  dfon2lem4  33889  finminlem  34577  lkrss2N  37408  dvh3dim3N  39689
  Copyright terms: Public domain W3C validator