| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version | ||
| Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
| Ref | Expression |
|---|---|
| sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4047 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | 1 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
| 3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
| 4 | 3 | orrd 863 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| 5 | pssss 4057 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 6 | eqimss 4002 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ⊆ wss 3911 ⊊ wpss 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3928 df-pss 3931 |
| This theorem is referenced by: sspsstri 4064 sspsstr 4067 psssstr 4068 ordsseleq 6349 sorpssuni 7688 sorpssint 7689 ssnnfi 9110 ackbij1b 10167 fin23lem40 10280 zorng 10433 psslinpr 10960 suplem2pr 10982 ressval3d 17192 mrissmrcd 17581 pgpssslw 19528 pgpfac1lem5 19995 idnghm 24664 slelss 27858 dfon2lem4 35767 finminlem 36299 lkrss2N 39155 dvh3dim3N 41436 ordsssucb 43317 |
| Copyright terms: Public domain | W3C validator |