| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspss | Structured version Visualization version GIF version | ||
| Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
| Ref | Expression |
|---|---|
| sspss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4051 | . . . . 5 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | 1 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵)) |
| 3 | 2 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵)) |
| 4 | 3 | orrd 863 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| 5 | pssss 4061 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 6 | eqimss 4005 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3931 df-pss 3934 |
| This theorem is referenced by: sspsstri 4068 sspsstr 4071 psssstr 4072 ordsseleq 6361 sorpssuni 7708 sorpssint 7709 ssnnfi 9133 ackbij1b 10191 fin23lem40 10304 zorng 10457 psslinpr 10984 suplem2pr 11006 ressval3d 17216 mrissmrcd 17601 pgpssslw 19544 pgpfac1lem5 20011 idnghm 24631 slelss 27820 dfon2lem4 35774 finminlem 36306 lkrss2N 39162 dvh3dim3N 41443 ordsssucb 43324 |
| Copyright terms: Public domain | W3C validator |