MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4049
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4035 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 500 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 863 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4045 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 3988 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 857 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1541  wss 3897  wpss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-cleq 2723  df-ne 2929  df-ss 3914  df-pss 3917
This theorem is referenced by:  sspsstri  4052  sspsstr  4055  psssstr  4056  ordsseleq  6335  sorpssuni  7665  sorpssint  7666  ssnnfi  9079  ackbij1b  10129  fin23lem40  10242  zorng  10395  psslinpr  10922  suplem2pr  10944  ressval3d  17157  mrissmrcd  17546  pgpssslw  19526  pgpfac1lem5  19993  idnghm  24658  slelss  27854  dfon2lem4  35828  finminlem  36362  lkrss2N  39278  dvh3dim3N  41558  ordsssucb  43438
  Copyright terms: Public domain W3C validator