MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 4034
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 4020 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 501 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 145 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 860 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 4030 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 3977 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 854 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 208 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   = wceq 1539  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-in 3894  df-ss 3904  df-pss 3906
This theorem is referenced by:  sspsstri  4037  sspsstr  4040  psssstr  4041  ordsseleq  6295  sorpssuni  7585  sorpssint  7586  ssnnfi  8952  ssnnfiOLD  8953  ackbij1b  9995  fin23lem40  10107  zorng  10260  psslinpr  10787  suplem2pr  10809  ressval3d  16956  ressval3dOLD  16957  mrissmrcd  17349  pgpssslw  19219  pgpfac1lem5  19682  idnghm  23907  dfon2lem4  33762  finminlem  34507  lkrss2N  37183  dvh3dim3N  39463
  Copyright terms: Public domain W3C validator