MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpss Structured version   Visualization version   GIF version

Theorem slwpss 19132
Description: A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwispgp.1 𝑆 = (𝐺s 𝐾)
Assertion
Ref Expression
slwpss ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ¬ 𝑃 pGrp 𝑆)

Proof of Theorem slwpss
StepHypRef Expression
1 simp3 1136 . . 3 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
21pssned 4029 . 2 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
31pssssd 4028 . . . . 5 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
43biantrurd 532 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (𝑃 pGrp 𝑆 ↔ (𝐻𝐾𝑃 pGrp 𝑆)))
5 slwispgp.1 . . . . . 6 𝑆 = (𝐺s 𝐾)
65slwispgp 19131 . . . . 5 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
763adant3 1130 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
84, 7bitrd 278 . . 3 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (𝑃 pGrp 𝑆𝐻 = 𝐾))
98necon3bbid 2980 . 2 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (¬ 𝑃 pGrp 𝑆𝐻𝐾))
102, 9mpbird 256 1 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ¬ 𝑃 pGrp 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  wpss 3884   class class class wbr 5070  cfv 6418  (class class class)co 7255  s cress 16867  SubGrpcsubg 18664   pGrp cpgp 19049   pSyl cslw 19050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-subg 18667  df-slw 19054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator