![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slwpss | Structured version Visualization version GIF version |
Description: A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
Ref | Expression |
---|---|
slwpss | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . . 3 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ⊊ 𝐾) | |
2 | 1 | pssned 4114 | . 2 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ≠ 𝐾) |
3 | 1 | pssssd 4113 | . . . . 5 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ⊆ 𝐾) |
4 | 3 | biantrurd 532 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (𝑃 pGrp 𝑆 ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
5 | slwispgp.1 | . . . . . 6 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
6 | 5 | slwispgp 19653 | . . . . 5 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
7 | 6 | 3adant3 1133 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
8 | 4, 7 | bitrd 279 | . . 3 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (𝑃 pGrp 𝑆 ↔ 𝐻 = 𝐾)) |
9 | 8 | necon3bbid 2978 | . 2 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (¬ 𝑃 pGrp 𝑆 ↔ 𝐻 ≠ 𝐾)) |
10 | 2, 9 | mpbird 257 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ⊆ wss 3966 ⊊ wpss 3967 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 ↾s cress 17283 SubGrpcsubg 19160 pGrp cpgp 19568 pSyl cslw 19569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-subg 19163 df-slw 19573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |