| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slwpss | Structured version Visualization version GIF version | ||
| Description: A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
| Ref | Expression |
|---|---|
| slwpss | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ⊊ 𝐾) | |
| 2 | 1 | pssned 4066 | . 2 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ≠ 𝐾) |
| 3 | 1 | pssssd 4065 | . . . . 5 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → 𝐻 ⊆ 𝐾) |
| 4 | 3 | biantrurd 532 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (𝑃 pGrp 𝑆 ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
| 5 | slwispgp.1 | . . . . . 6 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
| 6 | 5 | slwispgp 19547 | . . . . 5 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
| 7 | 6 | 3adant3 1132 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
| 8 | 4, 7 | bitrd 279 | . . 3 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (𝑃 pGrp 𝑆 ↔ 𝐻 = 𝐾)) |
| 9 | 8 | necon3bbid 2963 | . 2 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → (¬ 𝑃 pGrp 𝑆 ↔ 𝐻 ≠ 𝐾)) |
| 10 | 2, 9 | mpbird 257 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3916 ⊊ wpss 3917 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ↾s cress 17206 SubGrpcsubg 19058 pGrp cpgp 19462 pSyl cslw 19463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-subg 19061 df-slw 19467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |