MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpss Structured version   Visualization version   GIF version

Theorem slwpss 19491
Description: A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwispgp.1 𝑆 = (𝐺s 𝐾)
Assertion
Ref Expression
slwpss ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ¬ 𝑃 pGrp 𝑆)

Proof of Theorem slwpss
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
21pssned 4052 . 2 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
31pssssd 4051 . . . . 5 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → 𝐻𝐾)
43biantrurd 532 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (𝑃 pGrp 𝑆 ↔ (𝐻𝐾𝑃 pGrp 𝑆)))
5 slwispgp.1 . . . . . 6 𝑆 = (𝐺s 𝐾)
65slwispgp 19490 . . . . 5 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
763adant3 1132 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
84, 7bitrd 279 . . 3 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (𝑃 pGrp 𝑆𝐻 = 𝐾))
98necon3bbid 2962 . 2 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → (¬ 𝑃 pGrp 𝑆𝐻𝐾))
102, 9mpbird 257 1 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻𝐾) → ¬ 𝑃 pGrp 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3903  wpss 3904   class class class wbr 5092  cfv 6482  (class class class)co 7349  s cress 17141  SubGrpcsubg 18999   pGrp cpgp 19405   pSyl cslw 19406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-subg 19002  df-slw 19410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator