![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatssn0 | Structured version Visualization version GIF version |
Description: A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
lsatssn0.o | ⊢ 0 = (0g‘𝑊) |
lsatssn0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatssn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsatssn0.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatssn0.u | ⊢ (𝜑 → 𝑄 ⊆ 𝑈) |
Ref | Expression |
---|---|
lsatssn0 | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatssn0.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | eqid 2724 | . . . . . . 7 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | lsatssn0.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | lsatssn0.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
5 | 2, 3, 1, 4 | lsatlssel 38357 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
6 | lsatssn0.o | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
7 | 6, 2 | lss0ss 20786 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄) |
8 | 1, 5, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → { 0 } ⊆ 𝑄) |
9 | 6, 3, 1, 4 | lsatn0 38359 | . . . . . 6 ⊢ (𝜑 → 𝑄 ≠ { 0 }) |
10 | 9 | necomd 2988 | . . . . 5 ⊢ (𝜑 → { 0 } ≠ 𝑄) |
11 | df-pss 3959 | . . . . 5 ⊢ ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄)) | |
12 | 8, 10, 11 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → { 0 } ⊊ 𝑄) |
13 | lsatssn0.u | . . . 4 ⊢ (𝜑 → 𝑄 ⊆ 𝑈) | |
14 | 12, 13 | psssstrd 4101 | . . 3 ⊢ (𝜑 → { 0 } ⊊ 𝑈) |
15 | 14 | pssned 4090 | . 2 ⊢ (𝜑 → { 0 } ≠ 𝑈) |
16 | 15 | necomd 2988 | 1 ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 ⊊ wpss 3941 {csn 4620 ‘cfv 6533 0gc0g 17384 LModclmod 20696 LSubSpclss 20768 LSAtomsclsa 38334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-sbg 18858 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-lmod 20698 df-lss 20769 df-lsp 20809 df-lsatoms 38336 |
This theorem is referenced by: lsatcmp2 38364 |
Copyright terms: Public domain | W3C validator |