MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucne Structured version   Visualization version   GIF version

Theorem omsucne 7706
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
omsucne (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)

Proof of Theorem omsucne
StepHypRef Expression
1 nnord 7695 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
2 orddisj 6289 . . . . 5 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
31, 2syl 17 . . . 4 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
4 snnzg 4707 . . . 4 (𝐴 ∈ ω → {𝐴} ≠ ∅)
5 disjpss 4391 . . . 4 (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
63, 4, 5syl2anc 583 . . 3 (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
76pssned 4029 . 2 (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴}))
8 df-suc 6257 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
98neeq2i 3008 . 2 (𝐴 ≠ suc 𝐴𝐴 ≠ (𝐴 ∪ {𝐴}))
107, 9sylibr 233 1 (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cun 3881  cin 3882  wpss 3884  c0 4253  {csn 4558  Ord word 6250  suc csuc 6253  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257  df-om 7688
This theorem is referenced by:  1one2o  8436
  Copyright terms: Public domain W3C validator