| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version | ||
| Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7807 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | orddisj 6345 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
| 4 | snnzg 4726 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
| 5 | disjpss 4412 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
| 7 | 6 | pssned 4052 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 8 | df-suc 6313 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | neeq2i 2990 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3901 ∩ cin 3902 ⊊ wpss 3904 ∅c0 4284 {csn 4577 Ord word 6306 suc csuc 6309 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 df-om 7800 |
| This theorem is referenced by: 1one2o 8564 |
| Copyright terms: Public domain | W3C validator |