Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version |
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7695 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | orddisj 6289 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
4 | snnzg 4707 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
5 | disjpss 4391 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
6 | 3, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
7 | 6 | pssned 4029 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
8 | df-suc 6257 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
9 | 8 | neeq2i 3008 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
10 | 7, 9 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ∩ cin 3882 ⊊ wpss 3884 ∅c0 4253 {csn 4558 Ord word 6250 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-om 7688 |
This theorem is referenced by: 1one2o 8436 |
Copyright terms: Public domain | W3C validator |