MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucne Structured version   Visualization version   GIF version

Theorem omsucne 7731
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
omsucne (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)

Proof of Theorem omsucne
StepHypRef Expression
1 nnord 7720 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
2 orddisj 6304 . . . . 5 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
31, 2syl 17 . . . 4 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
4 snnzg 4710 . . . 4 (𝐴 ∈ ω → {𝐴} ≠ ∅)
5 disjpss 4394 . . . 4 (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
63, 4, 5syl2anc 584 . . 3 (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
76pssned 4033 . 2 (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴}))
8 df-suc 6272 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
98neeq2i 3009 . 2 (𝐴 ≠ suc 𝐴𝐴 ≠ (𝐴 ∪ {𝐴}))
107, 9sylibr 233 1 (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cun 3885  cin 3886  wpss 3888  c0 4256  {csn 4561  Ord word 6265  suc csuc 6268  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272  df-om 7713
This theorem is referenced by:  1one2o  8476
  Copyright terms: Public domain W3C validator