| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version | ||
| Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7850 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | orddisj 6370 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
| 4 | snnzg 4738 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
| 5 | disjpss 4424 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
| 7 | 6 | pssned 4064 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 8 | df-suc 6338 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | neeq2i 2990 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3912 ∩ cin 3913 ⊊ wpss 3915 ∅c0 4296 {csn 4589 Ord word 6331 suc csuc 6334 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-om 7843 |
| This theorem is referenced by: 1one2o 8610 |
| Copyright terms: Public domain | W3C validator |