| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version | ||
| Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7804 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | orddisj 6344 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
| 4 | snnzg 4724 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
| 5 | disjpss 4408 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
| 7 | 6 | pssned 4048 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 8 | df-suc 6312 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | neeq2i 2993 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∪ cun 3895 ∩ cin 3896 ⊊ wpss 3898 ∅c0 4280 {csn 4573 Ord word 6305 suc csuc 6308 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 df-om 7797 |
| This theorem is referenced by: 1one2o 8561 |
| Copyright terms: Public domain | W3C validator |