MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucne Structured version   Visualization version   GIF version

Theorem omsucne 7922
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
omsucne (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)

Proof of Theorem omsucne
StepHypRef Expression
1 nnord 7911 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
2 orddisj 6433 . . . . 5 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
31, 2syl 17 . . . 4 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
4 snnzg 4799 . . . 4 (𝐴 ∈ ω → {𝐴} ≠ ∅)
5 disjpss 4484 . . . 4 (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
63, 4, 5syl2anc 583 . . 3 (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
76pssned 4124 . 2 (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴}))
8 df-suc 6401 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
98neeq2i 3012 . 2 (𝐴 ≠ suc 𝐴𝐴 ≠ (𝐴 ∪ {𝐴}))
107, 9sylibr 234 1 (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cun 3974  cin 3975  wpss 3977  c0 4352  {csn 4648  Ord word 6394  suc csuc 6397  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401  df-om 7904
This theorem is referenced by:  1one2o  8702
  Copyright terms: Public domain W3C validator