MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucne Structured version   Visualization version   GIF version

Theorem omsucne 7895
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
omsucne (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)

Proof of Theorem omsucne
StepHypRef Expression
1 nnord 7884 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
2 orddisj 6412 . . . . 5 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
31, 2syl 17 . . . 4 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
4 snnzg 4783 . . . 4 (𝐴 ∈ ω → {𝐴} ≠ ∅)
5 disjpss 4464 . . . 4 (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
63, 4, 5syl2anc 582 . . 3 (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴}))
76pssned 4098 . 2 (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴}))
8 df-suc 6380 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
98neeq2i 3003 . 2 (𝐴 ≠ suc 𝐴𝐴 ≠ (𝐴 ∪ {𝐴}))
107, 9sylibr 233 1 (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2937  cun 3947  cin 3948  wpss 3950  c0 4326  {csn 4632  Ord word 6373  suc csuc 6376  ωcom 7876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377  df-on 6378  df-suc 6380  df-om 7877
This theorem is referenced by:  1one2o  8673
  Copyright terms: Public domain W3C validator