Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version |
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7720 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | orddisj 6304 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
4 | snnzg 4710 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
5 | disjpss 4394 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
7 | 6 | pssned 4033 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
8 | df-suc 6272 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
9 | 8 | neeq2i 3009 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
10 | 7, 9 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ∩ cin 3886 ⊊ wpss 3888 ∅c0 4256 {csn 4561 Ord word 6265 suc csuc 6268 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-om 7713 |
This theorem is referenced by: 1one2o 8476 |
Copyright terms: Public domain | W3C validator |