![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version |
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7859 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | orddisj 6399 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
4 | snnzg 4777 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
5 | disjpss 4459 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
7 | 6 | pssned 4097 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
8 | df-suc 6367 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
9 | 8 | neeq2i 3006 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
10 | 7, 9 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∪ cun 3945 ∩ cin 3946 ⊊ wpss 3948 ∅c0 4321 {csn 4627 Ord word 6360 suc csuc 6363 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-suc 6367 df-om 7852 |
This theorem is referenced by: 1one2o 8641 |
Copyright terms: Public domain | W3C validator |