| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsucne | Structured version Visualization version GIF version | ||
| Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| omsucne | ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7869 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | orddisj 6390 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
| 4 | snnzg 4750 | . . . 4 ⊢ (𝐴 ∈ ω → {𝐴} ≠ ∅) | |
| 5 | disjpss 4436 | . . . 4 ⊢ (((𝐴 ∩ {𝐴}) = ∅ ∧ {𝐴} ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ {𝐴})) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ (𝐴 ∪ {𝐴})) |
| 7 | 6 | pssned 4076 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 8 | df-suc 6358 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | neeq2i 2997 | . 2 ⊢ (𝐴 ≠ suc 𝐴 ↔ 𝐴 ≠ (𝐴 ∪ {𝐴})) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∪ cun 3924 ∩ cin 3925 ⊊ wpss 3927 ∅c0 4308 {csn 4601 Ord word 6351 suc csuc 6354 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 df-om 7862 |
| This theorem is referenced by: 1one2o 8658 |
| Copyright terms: Public domain | W3C validator |