MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Structured version   Visualization version   GIF version

Theorem ackbij1lem15 10162
Description: Lemma for ackbij1 10166. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem15 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Distinct variable groups:   𝐹,𝑐,𝑥,𝑦   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 1195 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ ω)
2 ackbij1lem3 10150 . . . . . . 7 (𝑐 ∈ ω → 𝑐 ∈ (𝒫 ω ∩ Fin))
31, 2syl 17 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ (𝒫 ω ∩ Fin))
4 simpr3 1197 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ 𝑐𝐵)
5 ackbij1lem1 10148 . . . . . . . 8 𝑐𝐵 → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
7 inss2 4197 . . . . . . 7 (𝐵𝑐) ⊆ 𝑐
86, 7eqsstrdi 3988 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) ⊆ 𝑐)
9 ackbij.f . . . . . . 7 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109ackbij1lem12 10159 . . . . . 6 ((𝑐 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∩ suc 𝑐) ⊆ 𝑐) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
113, 8, 10syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
129ackbij1lem10 10157 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
1312ffvelcdmi 7037 . . . . . . . 8 (𝑐 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑐) ∈ ω)
14 nnon 7828 . . . . . . . 8 ((𝐹𝑐) ∈ ω → (𝐹𝑐) ∈ On)
15 onpsssuc 7774 . . . . . . . 8 ((𝐹𝑐) ∈ On → (𝐹𝑐) ⊊ suc (𝐹𝑐))
163, 13, 14, 154syl 19 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ suc (𝐹𝑐))
179ackbij1lem14 10161 . . . . . . . . 9 (𝑐 ∈ ω → (𝐹‘{𝑐}) = suc (𝐹𝑐))
181, 17syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) = suc (𝐹𝑐))
1918psseq2d 4055 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ((𝐹𝑐) ⊊ (𝐹‘{𝑐}) ↔ (𝐹𝑐) ⊊ suc (𝐹𝑐)))
2016, 19mpbird 257 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘{𝑐}))
21 simpll 766 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝐴 ∈ (𝒫 ω ∩ Fin))
22 inss1 4196 . . . . . . . 8 (𝐴 ∩ suc 𝑐) ⊆ 𝐴
239ackbij1lem11 10158 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ suc 𝑐) ⊆ 𝐴) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
2421, 22, 23sylancl 586 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
25 ssun1 4137 . . . . . . . 8 {𝑐} ⊆ ({𝑐} ∪ (𝐴𝑐))
26 simpr2 1196 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐𝐴)
27 ackbij1lem2 10149 . . . . . . . . 9 (𝑐𝐴 → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2826, 27syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2925, 28sseqtrrid 3987 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → {𝑐} ⊆ (𝐴 ∩ suc 𝑐))
309ackbij1lem12 10159 . . . . . . 7 (((𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin) ∧ {𝑐} ⊆ (𝐴 ∩ suc 𝑐)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3124, 29, 30syl2anc 584 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3220, 31psssstrd 4071 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3311, 32sspsstrd 4070 . . . 4 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3433pssned 4060 . . 3 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ≠ (𝐹‘(𝐴 ∩ suc 𝑐)))
3534necomd 2980 . 2 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐴 ∩ suc 𝑐)) ≠ (𝐹‘(𝐵 ∩ suc 𝑐)))
3635neneqd 2930 1 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3909  cin 3910  wss 3911  wpss 3912  𝒫 cpw 4559  {csn 4585   ciun 4951  cmpt 5183   × cxp 5629  Oncon0 6320  suc csuc 6322  cfv 6499  ωcom 7822  Fincfn 8895  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868
This theorem is referenced by:  ackbij1lem16  10163
  Copyright terms: Public domain W3C validator