MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Structured version   Visualization version   GIF version

Theorem ackbij1lem15 9990
Description: Lemma for ackbij1 9994. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem15 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Distinct variable groups:   𝐹,𝑐,𝑥,𝑦   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 1193 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ ω)
2 ackbij1lem3 9978 . . . . . . 7 (𝑐 ∈ ω → 𝑐 ∈ (𝒫 ω ∩ Fin))
31, 2syl 17 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ (𝒫 ω ∩ Fin))
4 simpr3 1195 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ 𝑐𝐵)
5 ackbij1lem1 9976 . . . . . . . 8 𝑐𝐵 → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
7 inss2 4163 . . . . . . 7 (𝐵𝑐) ⊆ 𝑐
86, 7eqsstrdi 3975 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) ⊆ 𝑐)
9 ackbij.f . . . . . . 7 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109ackbij1lem12 9987 . . . . . 6 ((𝑐 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∩ suc 𝑐) ⊆ 𝑐) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
113, 8, 10syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
129ackbij1lem10 9985 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
1312ffvelrni 6960 . . . . . . . 8 (𝑐 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑐) ∈ ω)
14 nnon 7718 . . . . . . . 8 ((𝐹𝑐) ∈ ω → (𝐹𝑐) ∈ On)
15 onpsssuc 7666 . . . . . . . 8 ((𝐹𝑐) ∈ On → (𝐹𝑐) ⊊ suc (𝐹𝑐))
163, 13, 14, 154syl 19 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ suc (𝐹𝑐))
179ackbij1lem14 9989 . . . . . . . . 9 (𝑐 ∈ ω → (𝐹‘{𝑐}) = suc (𝐹𝑐))
181, 17syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) = suc (𝐹𝑐))
1918psseq2d 4028 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ((𝐹𝑐) ⊊ (𝐹‘{𝑐}) ↔ (𝐹𝑐) ⊊ suc (𝐹𝑐)))
2016, 19mpbird 256 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘{𝑐}))
21 simpll 764 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝐴 ∈ (𝒫 ω ∩ Fin))
22 inss1 4162 . . . . . . . 8 (𝐴 ∩ suc 𝑐) ⊆ 𝐴
239ackbij1lem11 9986 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ suc 𝑐) ⊆ 𝐴) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
2421, 22, 23sylancl 586 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
25 ssun1 4106 . . . . . . . 8 {𝑐} ⊆ ({𝑐} ∪ (𝐴𝑐))
26 simpr2 1194 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐𝐴)
27 ackbij1lem2 9977 . . . . . . . . 9 (𝑐𝐴 → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2826, 27syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2925, 28sseqtrrid 3974 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → {𝑐} ⊆ (𝐴 ∩ suc 𝑐))
309ackbij1lem12 9987 . . . . . . 7 (((𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin) ∧ {𝑐} ⊆ (𝐴 ∩ suc 𝑐)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3124, 29, 30syl2anc 584 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3220, 31psssstrd 4044 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3311, 32sspsstrd 4043 . . . 4 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3433pssned 4033 . . 3 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ≠ (𝐹‘(𝐴 ∩ suc 𝑐)))
3534necomd 2999 . 2 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐴 ∩ suc 𝑐)) ≠ (𝐹‘(𝐵 ∩ suc 𝑐)))
3635neneqd 2948 1 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cun 3885  cin 3886  wss 3887  wpss 3888  𝒫 cpw 4533  {csn 4561   ciun 4924  cmpt 5157   × cxp 5587  Oncon0 6266  suc csuc 6268  cfv 6433  ωcom 7712  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697
This theorem is referenced by:  ackbij1lem16  9991
  Copyright terms: Public domain W3C validator