MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Structured version   Visualization version   GIF version

Theorem ackbij1lem15 10252
Description: Lemma for ackbij1 10256. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem15 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Distinct variable groups:   𝐹,𝑐,𝑥,𝑦   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 1195 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ ω)
2 ackbij1lem3 10240 . . . . . . 7 (𝑐 ∈ ω → 𝑐 ∈ (𝒫 ω ∩ Fin))
31, 2syl 17 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ (𝒫 ω ∩ Fin))
4 simpr3 1197 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ 𝑐𝐵)
5 ackbij1lem1 10238 . . . . . . . 8 𝑐𝐵 → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
7 inss2 4218 . . . . . . 7 (𝐵𝑐) ⊆ 𝑐
86, 7eqsstrdi 4008 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) ⊆ 𝑐)
9 ackbij.f . . . . . . 7 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109ackbij1lem12 10249 . . . . . 6 ((𝑐 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∩ suc 𝑐) ⊆ 𝑐) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
113, 8, 10syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
129ackbij1lem10 10247 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
1312ffvelcdmi 7078 . . . . . . . 8 (𝑐 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑐) ∈ ω)
14 nnon 7872 . . . . . . . 8 ((𝐹𝑐) ∈ ω → (𝐹𝑐) ∈ On)
15 onpsssuc 7818 . . . . . . . 8 ((𝐹𝑐) ∈ On → (𝐹𝑐) ⊊ suc (𝐹𝑐))
163, 13, 14, 154syl 19 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ suc (𝐹𝑐))
179ackbij1lem14 10251 . . . . . . . . 9 (𝑐 ∈ ω → (𝐹‘{𝑐}) = suc (𝐹𝑐))
181, 17syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) = suc (𝐹𝑐))
1918psseq2d 4076 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ((𝐹𝑐) ⊊ (𝐹‘{𝑐}) ↔ (𝐹𝑐) ⊊ suc (𝐹𝑐)))
2016, 19mpbird 257 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘{𝑐}))
21 simpll 766 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝐴 ∈ (𝒫 ω ∩ Fin))
22 inss1 4217 . . . . . . . 8 (𝐴 ∩ suc 𝑐) ⊆ 𝐴
239ackbij1lem11 10248 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ suc 𝑐) ⊆ 𝐴) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
2421, 22, 23sylancl 586 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
25 ssun1 4158 . . . . . . . 8 {𝑐} ⊆ ({𝑐} ∪ (𝐴𝑐))
26 simpr2 1196 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐𝐴)
27 ackbij1lem2 10239 . . . . . . . . 9 (𝑐𝐴 → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2826, 27syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2925, 28sseqtrrid 4007 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → {𝑐} ⊆ (𝐴 ∩ suc 𝑐))
309ackbij1lem12 10249 . . . . . . 7 (((𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin) ∧ {𝑐} ⊆ (𝐴 ∩ suc 𝑐)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3124, 29, 30syl2anc 584 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3220, 31psssstrd 4092 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3311, 32sspsstrd 4091 . . . 4 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3433pssned 4081 . . 3 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ≠ (𝐹‘(𝐴 ∩ suc 𝑐)))
3534necomd 2988 . 2 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐴 ∩ suc 𝑐)) ≠ (𝐹‘(𝐵 ∩ suc 𝑐)))
3635neneqd 2938 1 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3929  cin 3930  wss 3931  wpss 3932  𝒫 cpw 4580  {csn 4606   ciun 4972  cmpt 5206   × cxp 5657  Oncon0 6357  suc csuc 6359  cfv 6536  ωcom 7866  Fincfn 8964  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958
This theorem is referenced by:  ackbij1lem16  10253
  Copyright terms: Public domain W3C validator