MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Visualization version   GIF version

Theorem canthnumlem 10262
Description: Lemma for canthnum 10263. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canthnumlem (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 6615 . . . . 5 (𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2 ssid 3923 . . . . . 6 (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)
3 canth4.1 . . . . . . 7 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
4 canth4.2 . . . . . . 7 𝐵 = dom 𝑊
5 canth4.3 . . . . . . 7 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
63, 4, 5canth4 10261 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
72, 6mp3an3 1452 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
81, 7sylan2 596 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
98simp3d 1146 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐹𝐵) = (𝐹𝐶))
10 simpr 488 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
118simp1d 1144 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐴)
12 elpw2g 5237 . . . . . . 7 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1312adantr 484 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1411, 13mpbird 260 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ 𝒫 𝐴)
15 eqid 2737 . . . . . . . . . . . 12 𝐵 = 𝐵
16 eqid 2737 . . . . . . . . . . . 12 (𝑊𝐵) = (𝑊𝐵)
1715, 16pm3.2i 474 . . . . . . . . . . 11 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
18 simpl 486 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐴𝑉)
1910, 1syl 17 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2019ffvelrnda 6904 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
213, 18, 20, 4fpwwe 10260 . . . . . . . . . . 11 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
2217, 21mpbiri 261 . . . . . . . . . 10 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
2322simpld 498 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝑊(𝑊𝐵))
243, 18fpwwelem 10259 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
2523, 24mpbid 235 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
2625simprld 772 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝑊𝐵) We 𝐵)
27 fvex 6730 . . . . . . . 8 (𝑊𝐵) ∈ V
28 weeq1 5539 . . . . . . . 8 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
2927, 28spcev 3521 . . . . . . 7 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
3026, 29syl 17 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ∃𝑟 𝑟 We 𝐵)
31 ween 9649 . . . . . 6 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
3230, 31sylibr 237 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ dom card)
3314, 32elind 4108 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ (𝒫 𝐴 ∩ dom card))
348simp2d 1145 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3534pssssd 4012 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3635, 11sstrd 3911 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐴)
37 elpw2g 5237 . . . . . . 7 (𝐴𝑉 → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3837adantr 484 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3936, 38mpbird 260 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ 𝒫 𝐴)
40 ssnum 9653 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐶𝐵) → 𝐶 ∈ dom card)
4132, 35, 40syl2anc 587 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ dom card)
4239, 41elind 4108 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ (𝒫 𝐴 ∩ dom card))
43 f1fveq 7074 . . . 4 ((𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∩ dom card) ∧ 𝐶 ∈ (𝒫 𝐴 ∩ dom card))) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
4410, 33, 42, 43syl12anc 837 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
459, 44mpbid 235 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 = 𝐶)
4634pssned 4013 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
4746necomd 2996 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐶)
4847neneqd 2945 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ¬ 𝐵 = 𝐶)
4945, 48pm2.65da 817 1 (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wral 3061  cin 3865  wss 3866  wpss 3867  𝒫 cpw 4513  {csn 4541   cuni 4819   class class class wbr 5053  {copab 5115   We wwe 5508   × cxp 5549  ccnv 5550  dom cdm 5551  cima 5554  wf 6376  1-1wf1 6377  cfv 6380  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-1st 7761  df-wrecs 8047  df-recs 8108  df-er 8391  df-en 8627  df-dom 8628  df-oi 9126  df-card 9555
This theorem is referenced by:  canthnum  10263
  Copyright terms: Public domain W3C validator