MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Visualization version   GIF version

Theorem canthnumlem 10601
Description: Lemma for canthnum 10602. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canthnumlem (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 6756 . . . . 5 (𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2 ssid 3969 . . . . . 6 (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)
3 canth4.1 . . . . . . 7 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
4 canth4.2 . . . . . . 7 𝐵 = dom 𝑊
5 canth4.3 . . . . . . 7 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
63, 4, 5canth4 10600 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
72, 6mp3an3 1452 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
81, 7sylan2 593 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
98simp3d 1144 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐹𝐵) = (𝐹𝐶))
10 simpr 484 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
118simp1d 1142 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐴)
12 elpw2g 5288 . . . . . . 7 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1312adantr 480 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1411, 13mpbird 257 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ 𝒫 𝐴)
15 eqid 2729 . . . . . . . . . . . 12 𝐵 = 𝐵
16 eqid 2729 . . . . . . . . . . . 12 (𝑊𝐵) = (𝑊𝐵)
1715, 16pm3.2i 470 . . . . . . . . . . 11 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
18 simpl 482 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐴𝑉)
1910, 1syl 17 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2019ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
213, 18, 20, 4fpwwe 10599 . . . . . . . . . . 11 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
2217, 21mpbiri 258 . . . . . . . . . 10 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
2322simpld 494 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝑊(𝑊𝐵))
243, 18fpwwelem 10598 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
2523, 24mpbid 232 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
2625simprld 771 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝑊𝐵) We 𝐵)
27 fvex 6871 . . . . . . . 8 (𝑊𝐵) ∈ V
28 weeq1 5625 . . . . . . . 8 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
2927, 28spcev 3572 . . . . . . 7 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
3026, 29syl 17 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ∃𝑟 𝑟 We 𝐵)
31 ween 9988 . . . . . 6 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
3230, 31sylibr 234 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ dom card)
3314, 32elind 4163 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ (𝒫 𝐴 ∩ dom card))
348simp2d 1143 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3534pssssd 4063 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3635, 11sstrd 3957 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐴)
37 elpw2g 5288 . . . . . . 7 (𝐴𝑉 → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3837adantr 480 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3936, 38mpbird 257 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ 𝒫 𝐴)
40 ssnum 9992 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐶𝐵) → 𝐶 ∈ dom card)
4132, 35, 40syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ dom card)
4239, 41elind 4163 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ (𝒫 𝐴 ∩ dom card))
43 f1fveq 7237 . . . 4 ((𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∩ dom card) ∧ 𝐶 ∈ (𝒫 𝐴 ∩ dom card))) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
4410, 33, 42, 43syl12anc 836 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
459, 44mpbid 232 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 = 𝐶)
4634pssned 4064 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
4746necomd 2980 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐶)
4847neneqd 2930 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ¬ 𝐵 = 𝐶)
4945, 48pm2.65da 816 1 (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  cin 3913  wss 3914  wpss 3915  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  {copab 5169   We wwe 5590   × cxp 5636  ccnv 5637  dom cdm 5638  cima 5641  wf 6507  1-1wf1 6508  cfv 6511  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-oi 9463  df-card 9892
This theorem is referenced by:  canthnum  10602
  Copyright terms: Public domain W3C validator