MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Visualization version   GIF version

Theorem canthnumlem 10639
Description: Lemma for canthnum 10640. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canthnumlem (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 6784 . . . . 5 (𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2 ssid 4003 . . . . . 6 (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)
3 canth4.1 . . . . . . 7 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
4 canth4.2 . . . . . . 7 𝐵 = dom 𝑊
5 canth4.3 . . . . . . 7 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
63, 4, 5canth4 10638 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ (𝒫 𝐴 ∩ dom card)) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
72, 6mp3an3 1450 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
81, 7sylan2 593 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
98simp3d 1144 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐹𝐵) = (𝐹𝐶))
10 simpr 485 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
118simp1d 1142 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐴)
12 elpw2g 5343 . . . . . . 7 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1312adantr 481 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1411, 13mpbird 256 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ 𝒫 𝐴)
15 eqid 2732 . . . . . . . . . . . 12 𝐵 = 𝐵
16 eqid 2732 . . . . . . . . . . . 12 (𝑊𝐵) = (𝑊𝐵)
1715, 16pm3.2i 471 . . . . . . . . . . 11 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
18 simpl 483 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐴𝑉)
1910, 1syl 17 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐹:(𝒫 𝐴 ∩ dom card)⟶𝐴)
2019ffvelcdmda 7083 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
213, 18, 20, 4fpwwe 10637 . . . . . . . . . . 11 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
2217, 21mpbiri 257 . . . . . . . . . 10 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
2322simpld 495 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝑊(𝑊𝐵))
243, 18fpwwelem 10636 . . . . . . . . 9 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
2523, 24mpbid 231 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
2625simprld 770 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝑊𝐵) We 𝐵)
27 fvex 6901 . . . . . . . 8 (𝑊𝐵) ∈ V
28 weeq1 5663 . . . . . . . 8 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
2927, 28spcev 3596 . . . . . . 7 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
3026, 29syl 17 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ∃𝑟 𝑟 We 𝐵)
31 ween 10026 . . . . . 6 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
3230, 31sylibr 233 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ dom card)
3314, 32elind 4193 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 ∈ (𝒫 𝐴 ∩ dom card))
348simp2d 1143 . . . . . . . 8 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3534pssssd 4096 . . . . . . 7 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
3635, 11sstrd 3991 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐴)
37 elpw2g 5343 . . . . . . 7 (𝐴𝑉 → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3837adantr 481 . . . . . 6 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → (𝐶 ∈ 𝒫 𝐴𝐶𝐴))
3936, 38mpbird 256 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ 𝒫 𝐴)
40 ssnum 10030 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐶𝐵) → 𝐶 ∈ dom card)
4132, 35, 40syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ dom card)
4239, 41elind 4193 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶 ∈ (𝒫 𝐴 ∩ dom card))
43 f1fveq 7257 . . . 4 ((𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∩ dom card) ∧ 𝐶 ∈ (𝒫 𝐴 ∩ dom card))) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
4410, 33, 42, 43syl12anc 835 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
459, 44mpbid 231 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵 = 𝐶)
4634pssned 4097 . . . 4 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐶𝐵)
4746necomd 2996 . . 3 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → 𝐵𝐶)
4847neneqd 2945 . 2 ((𝐴𝑉𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴) → ¬ 𝐵 = 𝐶)
4945, 48pm2.65da 815 1 (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3061  cin 3946  wss 3947  wpss 3948  𝒫 cpw 4601  {csn 4627   cuni 4907   class class class wbr 5147  {copab 5209   We wwe 5629   × cxp 5673  ccnv 5674  dom cdm 5675  cima 5678  wf 6536  1-1wf1 6537  cfv 6540  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-er 8699  df-en 8936  df-dom 8937  df-oi 9501  df-card 9930
This theorem is referenced by:  canthnum  10640
  Copyright terms: Public domain W3C validator