MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqv2d Structured version   Visualization version   GIF version

Theorem mrieqv2d 16902
Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqv2d (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
Distinct variable groups:   𝑆,𝑠   𝜑,𝑠   𝐼,𝑠   𝑁,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝑋(𝑠)

Proof of Theorem mrieqv2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pssnel 4422 . . . . . . 7 (𝑠𝑆 → ∃𝑥(𝑥𝑆 ∧ ¬ 𝑥𝑠))
213ad2ant3 1129 . . . . . 6 ((𝜑𝑆𝐼𝑠𝑆) → ∃𝑥(𝑥𝑆 ∧ ¬ 𝑥𝑠))
3 mrieqvd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
433ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑆𝐼𝑠𝑆) → 𝐴 ∈ (Moore‘𝑋))
54adantr 481 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝐴 ∈ (Moore‘𝑋))
6 mrieqvd.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
7 simprr 769 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → ¬ 𝑥𝑠)
8 difsnb 4737 . . . . . . . . . 10 𝑥𝑠 ↔ (𝑠 ∖ {𝑥}) = 𝑠)
97, 8sylib 219 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑠 ∖ {𝑥}) = 𝑠)
10 simpl3 1187 . . . . . . . . . . 11 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠𝑆)
1110pssssd 4077 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠𝑆)
1211ssdifd 4120 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑠 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
139, 12eqsstrrd 4009 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠 ⊆ (𝑆 ∖ {𝑥}))
14 mrieqvd.3 . . . . . . . . . 10 𝐼 = (mrInd‘𝐴)
15 simpl2 1186 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆𝐼)
1614, 5, 15mrissd 16899 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆𝑋)
1716ssdifssd 4122 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
185, 6, 13, 17mrcssd 16887 . . . . . . 7 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁𝑠) ⊆ (𝑁‘(𝑆 ∖ {𝑥})))
19 difssd 4112 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑆 ∖ {𝑥}) ⊆ 𝑆)
205, 6, 19, 16mrcssd 16887 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊆ (𝑁𝑆))
215, 6, 16mrcssidd 16888 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆 ⊆ (𝑁𝑆))
22 simprl 767 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑥𝑆)
2321, 22sseldd 3971 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑥 ∈ (𝑁𝑆))
246, 14, 5, 15, 22ismri2dad 16900 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
2520, 23, 24ssnelpssd 4092 . . . . . . 7 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
2618, 25sspsstrd 4088 . . . . . 6 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁𝑠) ⊊ (𝑁𝑆))
272, 26exlimddv 1929 . . . . 5 ((𝜑𝑆𝐼𝑠𝑆) → (𝑁𝑠) ⊊ (𝑁𝑆))
28273expia 1115 . . . 4 ((𝜑𝑆𝐼) → (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
2928alrimiv 1921 . . 3 ((𝜑𝑆𝐼) → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
3029ex 413 . 2 (𝜑 → (𝑆𝐼 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
313adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
3231elfvexd 6700 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑋 ∈ V)
33 mrieqvd.4 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3433adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝑋)
3532, 34ssexd 5224 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝑆 ∈ V)
36 difexg 5227 . . . . . . . . . . . 12 (𝑆 ∈ V → (𝑆 ∖ {𝑥}) ∈ V)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑆 ∖ {𝑥}) ∈ V)
38 simp1r 1192 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑥𝑆)
39 difsnpss 4738 . . . . . . . . . . . . . . . 16 (𝑥𝑆 ↔ (𝑆 ∖ {𝑥}) ⊊ 𝑆)
4038, 39sylib 219 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑆 ∖ {𝑥}) ⊊ 𝑆)
41 simp2 1131 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑠 = (𝑆 ∖ {𝑥}))
4241psseq1d 4072 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑥}) ⊊ 𝑆))
4340, 42mpbird 258 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑠𝑆)
44 simp3 1132 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
4543, 44mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁𝑠) ⊊ (𝑁𝑆))
4641fveq2d 6670 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁𝑠) = (𝑁‘(𝑆 ∖ {𝑥})))
4746psseq1d 4072 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
4845, 47mpbid 233 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
49483expia 1115 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥})) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
5037, 49spcimdv 3596 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
51503impia 1111 . . . . . . . . 9 ((𝜑𝑥𝑆 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
5251pssned 4078 . . . . . . . 8 ((𝜑𝑥𝑆 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆))
53523com23 1120 . . . . . . 7 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆))
5433ad2ant1 1127 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
55333ad2ant1 1127 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝑆𝑋)
56 simp3 1132 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5754, 6, 55, 56mrieqvlemd 16892 . . . . . . . 8 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
5857necon3bbid 3057 . . . . . . 7 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
5953, 58mpbird 258 . . . . . 6 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
60593expia 1115 . . . . 5 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑥𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
6160ralrimiv 3185 . . . 4 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
6261ex 413 . . 3 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
636, 14, 3, 33ismri2d 16896 . . 3 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
6462, 63sylibrd 260 . 2 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → 𝑆𝐼))
6530, 64impbid 213 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081  wal 1528   = wceq 1530  wex 1773  wcel 2107  wne 3020  wral 3142  Vcvv 3499  cdif 3936  wss 3939  wpss 3940  {csn 4563  cfv 6351  Moorecmre 16845  mrClscmrc 16846  mrIndcmri 16847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-int 4874  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-mre 16849  df-mrc 16850  df-mri 16851
This theorem is referenced by:  mrissmrcd  16903
  Copyright terms: Public domain W3C validator