MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqv2d Structured version   Visualization version   GIF version

Theorem mrieqv2d 16910
Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqv2d (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
Distinct variable groups:   𝑆,𝑠   𝜑,𝑠   𝐼,𝑠   𝑁,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝑋(𝑠)

Proof of Theorem mrieqv2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pssnel 4420 . . . . . . 7 (𝑠𝑆 → ∃𝑥(𝑥𝑆 ∧ ¬ 𝑥𝑠))
213ad2ant3 1131 . . . . . 6 ((𝜑𝑆𝐼𝑠𝑆) → ∃𝑥(𝑥𝑆 ∧ ¬ 𝑥𝑠))
3 mrieqvd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
433ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑆𝐼𝑠𝑆) → 𝐴 ∈ (Moore‘𝑋))
54adantr 483 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝐴 ∈ (Moore‘𝑋))
6 mrieqvd.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
7 simprr 771 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → ¬ 𝑥𝑠)
8 difsnb 4739 . . . . . . . . . 10 𝑥𝑠 ↔ (𝑠 ∖ {𝑥}) = 𝑠)
97, 8sylib 220 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑠 ∖ {𝑥}) = 𝑠)
10 simpl3 1189 . . . . . . . . . . 11 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠𝑆)
1110pssssd 4074 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠𝑆)
1211ssdifd 4117 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑠 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
139, 12eqsstrrd 4006 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑠 ⊆ (𝑆 ∖ {𝑥}))
14 mrieqvd.3 . . . . . . . . . 10 𝐼 = (mrInd‘𝐴)
15 simpl2 1188 . . . . . . . . . 10 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆𝐼)
1614, 5, 15mrissd 16907 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆𝑋)
1716ssdifssd 4119 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
185, 6, 13, 17mrcssd 16895 . . . . . . 7 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁𝑠) ⊆ (𝑁‘(𝑆 ∖ {𝑥})))
19 difssd 4109 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑆 ∖ {𝑥}) ⊆ 𝑆)
205, 6, 19, 16mrcssd 16895 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊆ (𝑁𝑆))
215, 6, 16mrcssidd 16896 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑆 ⊆ (𝑁𝑆))
22 simprl 769 . . . . . . . . 9 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑥𝑆)
2321, 22sseldd 3968 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → 𝑥 ∈ (𝑁𝑆))
246, 14, 5, 15, 22ismri2dad 16908 . . . . . . . 8 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
2520, 23, 24ssnelpssd 4089 . . . . . . 7 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
2618, 25sspsstrd 4085 . . . . . 6 (((𝜑𝑆𝐼𝑠𝑆) ∧ (𝑥𝑆 ∧ ¬ 𝑥𝑠)) → (𝑁𝑠) ⊊ (𝑁𝑆))
272, 26exlimddv 1936 . . . . 5 ((𝜑𝑆𝐼𝑠𝑆) → (𝑁𝑠) ⊊ (𝑁𝑆))
28273expia 1117 . . . 4 ((𝜑𝑆𝐼) → (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
2928alrimiv 1928 . . 3 ((𝜑𝑆𝐼) → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
3029ex 415 . 2 (𝜑 → (𝑆𝐼 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
313adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
3231elfvexd 6704 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑋 ∈ V)
33 mrieqvd.4 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3433adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝑋)
3532, 34ssexd 5228 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝑆 ∈ V)
36 difexg 5231 . . . . . . . . . . . 12 (𝑆 ∈ V → (𝑆 ∖ {𝑥}) ∈ V)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑆 ∖ {𝑥}) ∈ V)
38 simp1r 1194 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑥𝑆)
39 difsnpss 4740 . . . . . . . . . . . . . . . 16 (𝑥𝑆 ↔ (𝑆 ∖ {𝑥}) ⊊ 𝑆)
4038, 39sylib 220 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑆 ∖ {𝑥}) ⊊ 𝑆)
41 simp2 1133 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑠 = (𝑆 ∖ {𝑥}))
4241psseq1d 4069 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑥}) ⊊ 𝑆))
4340, 42mpbird 259 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → 𝑠𝑆)
44 simp3 1134 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
4543, 44mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁𝑠) ⊊ (𝑁𝑆))
4641fveq2d 6674 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁𝑠) = (𝑁‘(𝑆 ∖ {𝑥})))
4746psseq1d 4069 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
4845, 47mpbid 234 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥}) ∧ (𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
49483expia 1117 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑠 = (𝑆 ∖ {𝑥})) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
5037, 49spcimdv 3592 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆)))
51503impia 1113 . . . . . . . . 9 ((𝜑𝑥𝑆 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ⊊ (𝑁𝑆))
5251pssned 4075 . . . . . . . 8 ((𝜑𝑥𝑆 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆))
53523com23 1122 . . . . . . 7 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆))
5433ad2ant1 1129 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
55333ad2ant1 1129 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝑆𝑋)
56 simp3 1134 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5754, 6, 55, 56mrieqvlemd 16900 . . . . . . . 8 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
5857necon3bbid 3053 . . . . . . 7 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
5953, 58mpbird 259 . . . . . 6 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
60593expia 1117 . . . . 5 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → (𝑥𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
6160ralrimiv 3181 . . . 4 ((𝜑 ∧ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
6261ex 415 . . 3 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
636, 14, 3, 33ismri2d 16904 . . 3 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
6462, 63sylibrd 261 . 2 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → 𝑆𝐼))
6530, 64impbid 214 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  wss 3936  wpss 3937  {csn 4567  cfv 6355  Moorecmre 16853  mrClscmrc 16854  mrIndcmri 16855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-mre 16857  df-mrc 16858  df-mri 16859
This theorem is referenced by:  mrissmrcd  16911
  Copyright terms: Public domain W3C validator