Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpcv Structured version   Visualization version   GIF version

Theorem islshpcv 37063
Description: Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpcv.v 𝑉 = (Base‘𝑊)
islshpcv.s 𝑆 = (LSubSp‘𝑊)
islshpcv.h 𝐻 = (LSHyp‘𝑊)
islshpcv.c 𝐶 = ( ⋖L𝑊)
islshpcv.w (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
islshpcv (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝐶𝑉)))

Proof of Theorem islshpcv
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 islshpcv.v . . 3 𝑉 = (Base‘𝑊)
2 islshpcv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 eqid 2740 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
4 islshpcv.h . . 3 𝐻 = (LSHyp‘𝑊)
5 eqid 2740 . . 3 (LSAtoms‘𝑊) = (LSAtoms‘𝑊)
6 islshpcv.w . . . 4 (𝜑𝑊 ∈ LVec)
7 lveclmod 20366 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ LMod)
91, 2, 3, 4, 5, 8islshpat 37027 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉)))
10 simp12 1203 . . . . . . 7 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝑆)
111, 2lssss 20196 . . . . . . . . . . . 12 (𝑈𝑆𝑈𝑉)
1210, 11syl 17 . . . . . . . . . . 11 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝑉)
13 simp13 1204 . . . . . . . . . . 11 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝑉)
14 df-pss 3911 . . . . . . . . . . 11 (𝑈𝑉 ↔ (𝑈𝑉𝑈𝑉))
1512, 13, 14sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝑉)
16 psseq2 4028 . . . . . . . . . . 11 ((𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈𝑉))
17163ad2ant3 1134 . . . . . . . . . 10 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈𝑉))
1815, 17mpbird 256 . . . . . . . . 9 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞))
19 islshpcv.c . . . . . . . . . 10 𝐶 = ( ⋖L𝑊)
2063ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑈𝑆𝑈𝑉) → 𝑊 ∈ LVec)
21203ad2ant1 1132 . . . . . . . . . 10 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑊 ∈ LVec)
22 simp2 1136 . . . . . . . . . 10 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑞 ∈ (LSAtoms‘𝑊))
232, 3, 5, 19, 21, 10, 22lcv2 37052 . . . . . . . . 9 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈𝐶(𝑈(LSSum‘𝑊)𝑞)))
2418, 23mpbid 231 . . . . . . . 8 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝐶(𝑈(LSSum‘𝑊)𝑞))
25 simp3 1137 . . . . . . . 8 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈(LSSum‘𝑊)𝑞) = 𝑉)
2624, 25breqtrd 5105 . . . . . . 7 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝐶𝑉)
2710, 26jca 512 . . . . . 6 (((𝜑𝑈𝑆𝑈𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈𝑆𝑈𝐶𝑉))
2827rexlimdv3a 3217 . . . . 5 ((𝜑𝑈𝑆𝑈𝑉) → (∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈𝑆𝑈𝐶𝑉)))
29283exp 1118 . . . 4 (𝜑 → (𝑈𝑆 → (𝑈𝑉 → (∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈𝑆𝑈𝐶𝑉)))))
30293impd 1347 . . 3 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈𝑆𝑈𝐶𝑉)))
31 simprl 768 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑈𝑆)
326adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑊 ∈ LVec)
338adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑊 ∈ LMod)
341, 2lss1 20198 . . . . . . . 8 (𝑊 ∈ LMod → 𝑉𝑆)
3533, 34syl 17 . . . . . . 7 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑉𝑆)
36 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑈𝐶𝑉)
372, 19, 32, 31, 35, 36lcvpss 37034 . . . . . 6 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑈𝑉)
3837pssned 4038 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → 𝑈𝑉)
392, 3, 5, 19, 33, 31, 35, 36lcvat 37040 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉)
4031, 38, 393jca 1127 . . . 4 ((𝜑 ∧ (𝑈𝑆𝑈𝐶𝑉)) → (𝑈𝑆𝑈𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉))
4140ex 413 . . 3 (𝜑 → ((𝑈𝑆𝑈𝐶𝑉) → (𝑈𝑆𝑈𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉)))
4230, 41impbid 211 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉) ↔ (𝑈𝑆𝑈𝐶𝑉)))
439, 42bitrd 278 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝐶𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  wss 3892  wpss 3893   class class class wbr 5079  cfv 6432  (class class class)co 7271  Basecbs 16910  LSSumclsm 19237  LModclmod 20121  LSubSpclss 20191  LVecclvec 20362  LSAtomsclsa 36984  LSHypclsh 36985  L clcv 37028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-drng 19991  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lvec 20363  df-lsatoms 36986  df-lshyp 36987  df-lcv 37029
This theorem is referenced by:  l1cvpat  37064  lshpat  37066
  Copyright terms: Public domain W3C validator