| Step | Hyp | Ref
| Expression |
| 1 | | islshpcv.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | islshpcv.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
| 3 | | eqid 2737 |
. . 3
⊢
(LSSum‘𝑊) =
(LSSum‘𝑊) |
| 4 | | islshpcv.h |
. . 3
⊢ 𝐻 = (LSHyp‘𝑊) |
| 5 | | eqid 2737 |
. . 3
⊢
(LSAtoms‘𝑊) =
(LSAtoms‘𝑊) |
| 6 | | islshpcv.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 7 | | lveclmod 21105 |
. . . 4
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | 1, 2, 3, 4, 5, 8 | islshpat 39018 |
. 2
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉))) |
| 10 | | simp12 1205 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ∈ 𝑆) |
| 11 | 1, 2 | lssss 20934 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ⊆ 𝑉) |
| 13 | | simp13 1206 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ≠ 𝑉) |
| 14 | | df-pss 3971 |
. . . . . . . . . . 11
⊢ (𝑈 ⊊ 𝑉 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ 𝑉)) |
| 15 | 12, 13, 14 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ⊊ 𝑉) |
| 16 | | psseq2 4091 |
. . . . . . . . . . 11
⊢ ((𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈 ⊊ 𝑉)) |
| 17 | 16 | 3ad2ant3 1136 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈 ⊊ 𝑉)) |
| 18 | 15, 17 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞)) |
| 19 | | islshpcv.c |
. . . . . . . . . 10
⊢ 𝐶 = ( ⋖L
‘𝑊) |
| 20 | 6 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) → 𝑊 ∈ LVec) |
| 21 | 20 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑊 ∈ LVec) |
| 22 | | simp2 1138 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑞 ∈ (LSAtoms‘𝑊)) |
| 23 | 2, 3, 5, 19, 21, 10, 22 | lcv2 39043 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ⊊ (𝑈(LSSum‘𝑊)𝑞) ↔ 𝑈𝐶(𝑈(LSSum‘𝑊)𝑞))) |
| 24 | 18, 23 | mpbid 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝐶(𝑈(LSSum‘𝑊)𝑞)) |
| 25 | | simp3 1139 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈(LSSum‘𝑊)𝑞) = 𝑉) |
| 26 | 24, 25 | breqtrd 5169 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → 𝑈𝐶𝑉) |
| 27 | 10, 26 | jca 511 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ 𝑞 ∈ (LSAtoms‘𝑊) ∧ (𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) |
| 28 | 27 | rexlimdv3a 3159 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) → (∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 29 | 28 | 3exp 1120 |
. . . 4
⊢ (𝜑 → (𝑈 ∈ 𝑆 → (𝑈 ≠ 𝑉 → (∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉 → (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))))) |
| 30 | 29 | 3impd 1349 |
. . 3
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉) → (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 31 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑈 ∈ 𝑆) |
| 32 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑊 ∈ LVec) |
| 33 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑊 ∈ LMod) |
| 34 | 1, 2 | lss1 20936 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑉 ∈ 𝑆) |
| 36 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑈𝐶𝑉) |
| 37 | 2, 19, 32, 31, 35, 36 | lcvpss 39025 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑈 ⊊ 𝑉) |
| 38 | 37 | pssned 4101 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → 𝑈 ≠ 𝑉) |
| 39 | 2, 3, 5, 19, 33, 31, 35, 36 | lcvat 39031 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉) |
| 40 | 31, 38, 39 | 3jca 1129 |
. . . 4
⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉)) → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉)) |
| 41 | 40 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉) → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉))) |
| 42 | 30, 41 | impbid 212 |
. 2
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ (LSAtoms‘𝑊)(𝑈(LSSum‘𝑊)𝑞) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 43 | 9, 42 | bitrd 279 |
1
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |