MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4095
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4093 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947  wpss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-pss 3966
This theorem is referenced by:  fin23lem36  10377  fin23lem39  10379  canthnumlem  10677  canthp1lem2  10682  elprnq  11020  npomex  11025  prlem934  11062  ltexprlem7  11071  wuncn  11199  mrieqv2d  17624  slwpss  19572  pgpfac1lem5  20041  lbspss  20972  lsppratlem1  21040  lsppratlem3  21042  lsppratlem4  21043  lrelat  38490  lsatcvatlem  38525  oaun3lem1  42806  oaun3lem2  42807
  Copyright terms: Public domain W3C validator