MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4028
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4026 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-pss 3902
This theorem is referenced by:  fin23lem36  10035  fin23lem39  10037  canthnumlem  10335  canthp1lem2  10340  elprnq  10678  npomex  10683  prlem934  10720  ltexprlem7  10729  wuncn  10857  mrieqv2d  17265  slwpss  19132  pgpfac1lem5  19597  lbspss  20259  lsppratlem1  20324  lsppratlem3  20326  lsppratlem4  20327  lrelat  36955  lsatcvatlem  36990
  Copyright terms: Public domain W3C validator