![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 4093 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ⊊ wpss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-pss 3966 |
This theorem is referenced by: fin23lem36 10377 fin23lem39 10379 canthnumlem 10677 canthp1lem2 10682 elprnq 11020 npomex 11025 prlem934 11062 ltexprlem7 11071 wuncn 11199 mrieqv2d 17624 slwpss 19572 pgpfac1lem5 20041 lbspss 20972 lsppratlem1 21040 lsppratlem3 21042 lsppratlem4 21043 lrelat 38490 lsatcvatlem 38525 oaun3lem1 42806 oaun3lem2 42807 |
Copyright terms: Public domain | W3C validator |