MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4066
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4064 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3917  wpss 3918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3937
This theorem is referenced by:  fin23lem36  10308  fin23lem39  10310  canthnumlem  10608  canthp1lem2  10613  elprnq  10951  npomex  10956  prlem934  10993  ltexprlem7  11002  wuncn  11130  mrieqv2d  17607  slwpss  19549  pgpfac1lem5  20018  lbspss  20996  lsppratlem1  21064  lsppratlem3  21066  lsppratlem4  21067  hashpss  32741  exsslsb  33599  lrelat  39014  lsatcvatlem  39049  oaun3lem1  43370  oaun3lem2  43371
  Copyright terms: Public domain W3C validator