![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 3899 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3769 ⊊ wpss 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-pss 3785 |
This theorem is referenced by: fin23lem36 9458 fin23lem39 9460 canthnumlem 9758 canthp1lem2 9763 elprnq 10101 npomex 10106 prlem934 10143 ltexprlem7 10152 wuncn 10279 mrieqv2d 16614 slwpss 18340 pgpfac1lem5 18794 lbspss 19403 lsppratlem1 19470 lsppratlem3 19472 lsppratlem4 19473 lrelat 35035 lsatcvatlem 35070 |
Copyright terms: Public domain | W3C validator |