MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4047
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4045 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897  wpss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3917
This theorem is referenced by:  fin23lem36  10239  fin23lem39  10241  canthnumlem  10539  canthp1lem2  10544  elprnq  10882  npomex  10887  prlem934  10924  ltexprlem7  10933  wuncn  11061  mrieqv2d  17545  slwpss  19524  pgpfac1lem5  19993  lbspss  21016  lsppratlem1  21084  lsppratlem3  21086  lsppratlem4  21087  hashpss  32791  exsslsb  33609  lrelat  39112  lsatcvatlem  39147  oaun3lem1  43466  oaun3lem2  43467
  Copyright terms: Public domain W3C validator