MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4123
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4121 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3996
This theorem is referenced by:  fin23lem36  10417  fin23lem39  10419  canthnumlem  10717  canthp1lem2  10722  elprnq  11060  npomex  11065  prlem934  11102  ltexprlem7  11111  wuncn  11239  mrieqv2d  17697  slwpss  19654  pgpfac1lem5  20123  lbspss  21104  lsppratlem1  21172  lsppratlem3  21174  lsppratlem4  21175  lrelat  38970  lsatcvatlem  39005  oaun3lem1  43336  oaun3lem2  43337
  Copyright terms: Public domain W3C validator