| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4064 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3937 |
| This theorem is referenced by: fin23lem36 10308 fin23lem39 10310 canthnumlem 10608 canthp1lem2 10613 elprnq 10951 npomex 10956 prlem934 10993 ltexprlem7 11002 wuncn 11130 mrieqv2d 17607 slwpss 19549 pgpfac1lem5 20018 lbspss 20996 lsppratlem1 21064 lsppratlem3 21066 lsppratlem4 21067 hashpss 32741 exsslsb 33599 lrelat 39014 lsatcvatlem 39049 oaun3lem1 43370 oaun3lem2 43371 |
| Copyright terms: Public domain | W3C validator |