MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 3998
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 3996 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3853  wpss 3854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-pss 3872
This theorem is referenced by:  fin23lem36  9860  fin23lem39  9862  canthnumlem  10160  canthp1lem2  10165  elprnq  10503  npomex  10508  prlem934  10545  ltexprlem7  10554  wuncn  10682  mrieqv2d  17025  slwpss  18867  pgpfac1lem5  19332  lbspss  19985  lsppratlem1  20050  lsppratlem3  20052  lsppratlem4  20053  lrelat  36683  lsatcvatlem  36718
  Copyright terms: Public domain W3C validator