| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4061 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3934 |
| This theorem is referenced by: fin23lem36 10301 fin23lem39 10303 canthnumlem 10601 canthp1lem2 10606 elprnq 10944 npomex 10949 prlem934 10986 ltexprlem7 10995 wuncn 11123 mrieqv2d 17600 slwpss 19542 pgpfac1lem5 20011 lbspss 20989 lsppratlem1 21057 lsppratlem3 21059 lsppratlem4 21060 hashpss 32734 exsslsb 33592 lrelat 39007 lsatcvatlem 39042 oaun3lem1 43363 oaun3lem2 43364 |
| Copyright terms: Public domain | W3C validator |