MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4063
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4061 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-pss 3934
This theorem is referenced by:  fin23lem36  10301  fin23lem39  10303  canthnumlem  10601  canthp1lem2  10606  elprnq  10944  npomex  10949  prlem934  10986  ltexprlem7  10995  wuncn  11123  mrieqv2d  17600  slwpss  19542  pgpfac1lem5  20011  lbspss  20989  lsppratlem1  21057  lsppratlem3  21059  lsppratlem4  21060  hashpss  32734  exsslsb  33592  lrelat  39007  lsatcvatlem  39042  oaun3lem1  43363  oaun3lem2  43364
  Copyright terms: Public domain W3C validator