Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 4026 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-pss 3902 |
This theorem is referenced by: fin23lem36 10035 fin23lem39 10037 canthnumlem 10335 canthp1lem2 10340 elprnq 10678 npomex 10683 prlem934 10720 ltexprlem7 10729 wuncn 10857 mrieqv2d 17265 slwpss 19132 pgpfac1lem5 19597 lbspss 20259 lsppratlem1 20324 lsppratlem3 20326 lsppratlem4 20327 lrelat 36955 lsatcvatlem 36990 |
Copyright terms: Public domain | W3C validator |