| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4049 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3903 ⊊ wpss 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3923 |
| This theorem is referenced by: fin23lem36 10242 fin23lem39 10244 canthnumlem 10542 canthp1lem2 10547 elprnq 10885 npomex 10890 prlem934 10927 ltexprlem7 10936 wuncn 11064 mrieqv2d 17545 slwpss 19491 pgpfac1lem5 19960 lbspss 20986 lsppratlem1 21054 lsppratlem3 21056 lsppratlem4 21057 hashpss 32755 exsslsb 33569 lrelat 39003 lsatcvatlem 39038 oaun3lem1 43357 oaun3lem2 43358 |
| Copyright terms: Public domain | W3C validator |