MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4097
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4095 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3948  wpss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-pss 3967
This theorem is referenced by:  fin23lem36  10345  fin23lem39  10347  canthnumlem  10645  canthp1lem2  10650  elprnq  10988  npomex  10993  prlem934  11030  ltexprlem7  11039  wuncn  11167  mrieqv2d  17587  slwpss  19521  pgpfac1lem5  19990  lbspss  20837  lsppratlem1  20905  lsppratlem3  20907  lsppratlem4  20908  lrelat  38187  lsatcvatlem  38222  oaun3lem1  42426  oaun3lem2  42427
  Copyright terms: Public domain W3C validator