![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 4121 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3996 |
This theorem is referenced by: fin23lem36 10417 fin23lem39 10419 canthnumlem 10717 canthp1lem2 10722 elprnq 11060 npomex 11065 prlem934 11102 ltexprlem7 11111 wuncn 11239 mrieqv2d 17697 slwpss 19654 pgpfac1lem5 20123 lbspss 21104 lsppratlem1 21172 lsppratlem3 21174 lsppratlem4 21175 lrelat 38970 lsatcvatlem 39005 oaun3lem1 43336 oaun3lem2 43337 |
Copyright terms: Public domain | W3C validator |