| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4073 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3946 |
| This theorem is referenced by: fin23lem36 10362 fin23lem39 10364 canthnumlem 10662 canthp1lem2 10667 elprnq 11005 npomex 11010 prlem934 11047 ltexprlem7 11056 wuncn 11184 mrieqv2d 17651 slwpss 19593 pgpfac1lem5 20062 lbspss 21040 lsppratlem1 21108 lsppratlem3 21110 lsppratlem4 21111 hashpss 32788 exsslsb 33636 lrelat 39032 lsatcvatlem 39067 oaun3lem1 43398 oaun3lem2 43399 |
| Copyright terms: Public domain | W3C validator |