| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4045 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 ⊊ wpss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3917 |
| This theorem is referenced by: fin23lem36 10239 fin23lem39 10241 canthnumlem 10539 canthp1lem2 10544 elprnq 10882 npomex 10887 prlem934 10924 ltexprlem7 10933 wuncn 11061 mrieqv2d 17545 slwpss 19524 pgpfac1lem5 19993 lbspss 21016 lsppratlem1 21084 lsppratlem3 21086 lsppratlem4 21087 hashpss 32791 exsslsb 33609 lrelat 39112 lsatcvatlem 39147 oaun3lem1 43466 oaun3lem2 43467 |
| Copyright terms: Public domain | W3C validator |