| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version | ||
| Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Ref | Expression |
|---|---|
| pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | pssss 4057 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3911 ⊊ wpss 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-pss 3931 |
| This theorem is referenced by: fin23lem36 10277 fin23lem39 10279 canthnumlem 10577 canthp1lem2 10582 elprnq 10920 npomex 10925 prlem934 10962 ltexprlem7 10971 wuncn 11099 mrieqv2d 17580 slwpss 19526 pgpfac1lem5 19995 lbspss 21021 lsppratlem1 21089 lsppratlem3 21091 lsppratlem4 21092 hashpss 32784 exsslsb 33585 lrelat 39000 lsatcvatlem 39035 oaun3lem1 43356 oaun3lem2 43357 |
| Copyright terms: Public domain | W3C validator |