MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 4032
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 4030 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-pss 3906
This theorem is referenced by:  fin23lem36  10104  fin23lem39  10106  canthnumlem  10404  canthp1lem2  10409  elprnq  10747  npomex  10752  prlem934  10789  ltexprlem7  10798  wuncn  10926  mrieqv2d  17348  slwpss  19217  pgpfac1lem5  19682  lbspss  20344  lsppratlem1  20409  lsppratlem3  20411  lsppratlem4  20412  lrelat  37028  lsatcvatlem  37063
  Copyright terms: Public domain W3C validator