Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwpwab | Structured version Visualization version GIF version |
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
pwpwab | ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3435 | . . 3 ⊢ 𝑥 ∈ V | |
2 | elpwpw 5036 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ ∪ 𝑥 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran 706 | . 2 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴) |
4 | 3 | abbi2i 2881 | 1 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 {cab 2717 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 df-uni 4846 |
This theorem is referenced by: pwpwssunieq 5038 |
Copyright terms: Public domain | W3C validator |