MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwab Structured version   Visualization version   GIF version

Theorem pwpwab 5032
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 3436 . . 3 𝑥 ∈ V
2 elpwpw 5031 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 706 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43abbi2i 2879 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  pwpwssunieq  5033
  Copyright terms: Public domain W3C validator