MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwab Structured version   Visualization version   GIF version

Theorem pwpwab 5107
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 3479 . . 3 𝑥 ∈ V
2 elpwpw 5106 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 708 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43eqabi 2870 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  wss 3949  𝒫 cpw 4603   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605  df-uni 4910
This theorem is referenced by:  pwpwssunieq  5108
  Copyright terms: Public domain W3C validator