MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwab Structured version   Visualization version   GIF version

Theorem pwpwab 5070
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 3454 . . 3 𝑥 ∈ V
2 elpwpw 5069 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 709 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43eqabi 2864 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3934  df-pw 4568  df-uni 4875
This theorem is referenced by:  pwpwssunieq  5071
  Copyright terms: Public domain W3C validator