Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwab Structured version   Visualization version   GIF version

Theorem pwpwab 5012
 Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 3484 . . 3 𝑥 ∈ V
2 elpwpw 5011 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 708 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43abbi2i 2955 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2115  {cab 2802  Vcvv 3481   ⊆ wss 3920  𝒫 cpw 4523  ∪ cuni 4825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-ral 3138  df-v 3483  df-in 3927  df-ss 3937  df-pw 4525  df-uni 4826 This theorem is referenced by:  pwpwssunieq  5013
 Copyright terms: Public domain W3C validator