![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpwab | Structured version Visualization version GIF version |
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
pwpwab | ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3475 | . . 3 ⊢ 𝑥 ∈ V | |
2 | elpwpw 5105 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ ∪ 𝑥 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran 708 | . 2 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴) |
4 | 3 | eqabi 2865 | 1 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4603 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-v 3473 df-in 3954 df-ss 3964 df-pw 4605 df-uni 4909 |
This theorem is referenced by: pwpwssunieq 5107 |
Copyright terms: Public domain | W3C validator |