| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwpwssunieq | Structured version Visualization version GIF version | ||
| Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| pwpwssunieq | ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4022 | . . 3 ⊢ (∪ 𝑥 = 𝐴 → ∪ 𝑥 ⊆ 𝐴) | |
| 2 | 1 | ss2abi 4047 | . 2 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
| 3 | pwpwab 5083 | . 2 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | |
| 4 | 2, 3 | sseqtrri 4013 | 1 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-pw 4582 df-uni 4888 |
| This theorem is referenced by: toponsspwpw 22876 dmtopon 22877 |
| Copyright terms: Public domain | W3C validator |