![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpwssunieq | Structured version Visualization version GIF version |
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
pwpwssunieq | ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3806 | . . 3 ⊢ (∪ 𝑥 = 𝐴 → ∪ 𝑥 ⊆ 𝐴) | |
2 | 1 | ss2abi 3823 | . 2 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
3 | pwpwab 4748 | . 2 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | |
4 | 2, 3 | sseqtr4i 3787 | 1 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 {cab 2757 ⊆ wss 3723 𝒫 cpw 4297 ∪ cuni 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-in 3730 df-ss 3737 df-pw 4299 df-uni 4575 |
This theorem is referenced by: toponsspwpw 20947 dmtopon 20948 |
Copyright terms: Public domain | W3C validator |