MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwssunieq Structured version   Visualization version   GIF version

Theorem pwpwssunieq 5033
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwssunieq {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwssunieq
StepHypRef Expression
1 eqimss 3977 . . 3 ( 𝑥 = 𝐴 𝑥𝐴)
21ss2abi 4000 . 2 {𝑥 𝑥 = 𝐴} ⊆ {𝑥 𝑥𝐴}
3 pwpwab 5032 . 2 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
42, 3sseqtrri 3958 1 {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  toponsspwpw  22071  dmtopon  22072
  Copyright terms: Public domain W3C validator