MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwssunieq Structured version   Visualization version   GIF version

Theorem pwpwssunieq 5112
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwssunieq {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwssunieq
StepHypRef Expression
1 eqimss 4057 . . 3 ( 𝑥 = 𝐴 𝑥𝐴)
21ss2abi 4080 . 2 {𝑥 𝑥 = 𝐴} ⊆ {𝑥 𝑥𝐴}
3 pwpwab 5111 . 2 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
42, 3sseqtrri 4036 1 {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2714  wss 3966  𝒫 cpw 4608   cuni 4915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-v 3483  df-ss 3983  df-pw 4610  df-uni 4916
This theorem is referenced by:  toponsspwpw  22953  dmtopon  22954
  Copyright terms: Public domain W3C validator