MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwpw Structured version   Visualization version   GIF version

Theorem elpwpw 5107
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 4613 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐵))
2 sspwuni 5105 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
32anbi2i 623 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
41, 3bitri 275 1 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-v 3480  df-ss 3980  df-pw 4607  df-uni 4913
This theorem is referenced by:  pwpwab  5108  elpwpwel  7786  ismnushort  44297
  Copyright terms: Public domain W3C validator