Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqsres2 Structured version   Visualization version   GIF version

Theorem eldmqsres2 38248
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 22-Aug-2020.)
Assertion
Ref Expression
eldmqsres2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqsres2
StepHypRef Expression
1 eldmqsres 38247 . 2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
2 df-rex 3060 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
3 19.41v 1948 . . . 4 (∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
42, 3bitri 275 . . 3 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
54rexbii 3082 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
61, 5bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wrex 3059  dom cdm 5665  cres 5667  [cec 8725   / cqs 8726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733
This theorem is referenced by:  releldmqs  38618
  Copyright terms: Public domain W3C validator