Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqsres2 Structured version   Visualization version   GIF version

Theorem eldmqsres2 38269
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 22-Aug-2020.)
Assertion
Ref Expression
eldmqsres2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqsres2
StepHypRef Expression
1 eldmqsres 38268 . 2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
2 df-rex 3054 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
3 19.41v 1949 . . . 4 (∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
42, 3bitri 275 . . 3 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
54rexbii 3076 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅 ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
61, 5bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑢]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  dom cdm 5631  cres 5633  [cec 8646   / cqs 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654
This theorem is referenced by:  releldmqs  38643
  Copyright terms: Public domain W3C validator