MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28z Structured version   Visualization version   GIF version

Theorem r19.28z 4521
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.3rz.1 𝑥𝜑
Assertion
Ref Expression
r19.28z (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.28z
StepHypRef Expression
1 r19.26 3117 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
2 r19.3rz.1 . . . 4 𝑥𝜑
32r19.3rz 4520 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
43anbi1d 630 . 2 (𝐴 ≠ ∅ → ((𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
51, 4bitr4id 290 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1781  wne 2946  wral 3067  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-ne 2947  df-ral 3068  df-dif 3979  df-nul 4353
This theorem is referenced by:  r19.28zv  4524  raaan  4540  raaan2  4544
  Copyright terms: Public domain W3C validator