| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.3rzv | Structured version Visualization version GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| Ref | Expression |
|---|---|
| r19.3rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | r19.3rz 4477 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ≠ wne 2933 ∀wral 3052 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-ne 2934 df-ral 3053 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: r19.9rzv 4480 r19.37zv 4482 ralnralall 4495 iinconst 4983 cnvpo 6281 supicc 13523 coe1mul2lem1 22209 neipeltop 23072 utop3cls 24195 tgcgr4 28515 frgrregord013 30381 poimirlem23 37672 rencldnfi 42811 cvgdvgrat 44304 |
| Copyright terms: Public domain | W3C validator |