Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.3rzv | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
Ref | Expression |
---|---|
r19.3rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1922 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.3rz 4408 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ≠ wne 2940 ∀wral 3061 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-ne 2941 df-ral 3066 df-dif 3869 df-nul 4238 |
This theorem is referenced by: r19.9rzv 4411 r19.37zv 4413 ralnralall 4430 iinconst 4914 cnvpo 6150 supicc 13089 coe1mul2lem1 21188 neipeltop 22026 utop3cls 23149 tgcgr4 26622 frgrregord013 28478 poimirlem23 35537 rencldnfi 40346 cvgdvgrat 41604 |
Copyright terms: Public domain | W3C validator |