| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.3rzv | Structured version Visualization version GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| Ref | Expression |
|---|---|
| r19.3rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | r19.3rz 4444 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ≠ wne 2928 ∀wral 3047 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: r19.9rzv 4447 r19.37zv 4449 ralnralall 4462 iinconst 4950 cnvpo 6234 supicc 13401 coe1mul2lem1 22181 neipeltop 23044 utop3cls 24166 tgcgr4 28509 frgrregord013 30375 poimirlem23 37682 rencldnfi 42913 cvgdvgrat 44405 |
| Copyright terms: Public domain | W3C validator |