MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rzv Structured version   Visualization version   GIF version

Theorem r19.3rzv 4451
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.)
Assertion
Ref Expression
r19.3rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.3rzv
StepHypRef Expression
1 nfv 1917 . 2 𝑥𝜑
21r19.3rz 4449 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wne 2941  wral 3062  c0 4277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-ne 2942  df-ral 3063  df-dif 3908  df-nul 4278
This theorem is referenced by:  r19.9rzv  4452  r19.37zv  4454  ralnralall  4471  iinconst  4959  cnvpo  6232  supicc  13343  coe1mul2lem1  21548  neipeltop  22390  utop3cls  23513  tgcgr4  27247  frgrregord013  29113  poimirlem23  35956  rencldnfi  40956  cvgdvgrat  42304
  Copyright terms: Public domain W3C validator