MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rzv Structured version   Visualization version   GIF version

Theorem r19.3rzv 4499
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.)
Assertion
Ref Expression
r19.3rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.3rzv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
21r19.3rz 4497 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wne 2941  wral 3062  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-ne 2942  df-ral 3063  df-dif 3952  df-nul 4324
This theorem is referenced by:  r19.9rzv  4500  r19.37zv  4502  ralnralall  4519  iinconst  5008  cnvpo  6287  supicc  13478  coe1mul2lem1  21789  neipeltop  22633  utop3cls  23756  tgcgr4  27782  frgrregord013  29648  poimirlem23  36511  rencldnfi  41559  cvgdvgrat  43072
  Copyright terms: Public domain W3C validator