Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.3rzv | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
Ref | Expression |
---|---|
r19.3rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.3rz 4449 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ≠ wne 2941 ∀wral 3062 ∅c0 4277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-ne 2942 df-ral 3063 df-dif 3908 df-nul 4278 |
This theorem is referenced by: r19.9rzv 4452 r19.37zv 4454 ralnralall 4471 iinconst 4959 cnvpo 6232 supicc 13343 coe1mul2lem1 21548 neipeltop 22390 utop3cls 23513 tgcgr4 27247 frgrregord013 29113 poimirlem23 35956 rencldnfi 40956 cvgdvgrat 42304 |
Copyright terms: Public domain | W3C validator |