MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rzv Structured version   Visualization version   GIF version

Theorem r19.3rzv 4497
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.)
Assertion
Ref Expression
r19.3rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.3rzv
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
21r19.3rz 4495 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wne 2938  wral 3059  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-ne 2939  df-ral 3060  df-dif 3950  df-nul 4322
This theorem is referenced by:  r19.9rzv  4498  r19.37zv  4500  ralnralall  4517  iinconst  5006  cnvpo  6285  supicc  13482  coe1mul2lem1  22009  neipeltop  22853  utop3cls  23976  tgcgr4  28049  frgrregord013  29915  poimirlem23  36814  rencldnfi  41861  cvgdvgrat  43374
  Copyright terms: Public domain W3C validator