Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.3rzv | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
Ref | Expression |
---|---|
r19.3rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.3rz 4427 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ≠ wne 2943 ∀wral 3064 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-ral 3069 df-dif 3890 df-nul 4257 |
This theorem is referenced by: r19.9rzv 4430 r19.37zv 4432 ralnralall 4449 iinconst 4934 cnvpo 6190 supicc 13233 coe1mul2lem1 21438 neipeltop 22280 utop3cls 23403 tgcgr4 26892 frgrregord013 28759 poimirlem23 35800 rencldnfi 40643 cvgdvgrat 41931 |
Copyright terms: Public domain | W3C validator |