Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.28zf Structured version   Visualization version   GIF version

Theorem r19.28zf 44307
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
r19.28zf.1 𝑥𝜑
r19.28zf.2 𝑥𝐴
Assertion
Ref Expression
r19.28zf (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))

Proof of Theorem r19.28zf
StepHypRef Expression
1 r19.26 3103 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
2 r19.28zf.1 . . . 4 𝑥𝜑
3 r19.28zf.2 . . . 4 𝑥𝐴
42, 3r19.3rzf 44306 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
54anbi1d 629 . 2 (𝐴 ≠ ∅ → ((𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
61, 5bitr4id 290 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1777  wnfc 2875  wne 2932  wral 3053  c0 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-dif 3943  df-nul 4315
This theorem is referenced by:  iindif2f  44308
  Copyright terms: Public domain W3C validator