| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.28zf | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| r19.28zf.1 | ⊢ Ⅎ𝑥𝜑 |
| r19.28zf.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| r19.28zf | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.28zf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | r19.28zf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | r19.3rzf 45145 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 4 | anbi1d 631 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 6 | 1, 5 | bitr4id 290 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2877 ≠ wne 2926 ∀wral 3045 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-dif 3919 df-nul 4299 |
| This theorem is referenced by: iindif2f 45147 |
| Copyright terms: Public domain | W3C validator |