Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iindif2f Structured version   Visualization version   GIF version

Theorem iindif2f 45102
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws". (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
iindif2f.1 𝑥𝐴
iindif2f.2 𝑥𝐵
Assertion
Ref Expression
iindif2f (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))

Proof of Theorem iindif2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iindif2f.2 . . . . . 6 𝑥𝐵
21nfcri 2894 . . . . 5 𝑥 𝑦𝐵
3 iindif2f.1 . . . . 5 𝑥𝐴
42, 3r19.28zf 45101 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶)))
5 eldif 3972 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
65bicomi 224 . . . . 5 ((𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ 𝑦 ∈ (𝐵𝐶))
76ralbii 3090 . . . 4 (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
8 ralnex 3069 . . . . . 6 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃𝑥𝐴 𝑦𝐶)
9 eliun 4999 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
108, 9xchbinxr 335 . . . . 5 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶)
1110anbi2i 623 . . . 4 ((𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
124, 7, 113bitr3g 313 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶)))
13 eliin 5000 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
1413elv 3482 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
15 eldif 3972 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
1612, 14, 153bitr4g 314 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶)))
1716eqrdv 2732 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wnfc 2887  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  c0 4338   ciun 4995   ciin 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-v 3479  df-dif 3965  df-nul 4339  df-iun 4997  df-iin 4998
This theorem is referenced by:  saliinclf  46281
  Copyright terms: Public domain W3C validator