![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.3rzf | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
r19.3rzf.1 | ⊢ Ⅎ𝑥𝜑 |
r19.3rzf.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
r19.3rzf | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.3rzf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | n0f 4354 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
3 | biimt 360 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) | |
4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) |
5 | df-ral 3059 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
6 | r19.3rzf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
7 | 6 | 19.23 2208 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
8 | 5, 7 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
9 | 4, 8 | bitr4di 289 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 ∃wex 1775 Ⅎwnf 1779 ∈ wcel 2105 Ⅎwnfc 2887 ≠ wne 2937 ∀wral 3058 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-dif 3965 df-nul 4339 |
This theorem is referenced by: r19.28zf 45101 |
Copyright terms: Public domain | W3C validator |