![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjnf | Structured version Visualization version GIF version |
Description: In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.) |
Ref | Expression |
---|---|
disjnf | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4248 | . . . 4 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
2 | 1 | eqeq1i 2745 | . . 3 ⊢ ((𝐵 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅) |
3 | 2 | orbi1i 912 | . 2 ⊢ (((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) ↔ (𝐵 = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
4 | eqidd 2741 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐵) | |
5 | 4 | disjor 5148 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅)) |
6 | orcom 869 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦)) | |
7 | 6 | ralbii 3099 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ∀𝑦 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦)) |
8 | r19.32v 3198 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) | |
9 | 7, 8 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
10 | 9 | ralbii 3099 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ∀𝑥 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
11 | r19.32v 3198 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) | |
12 | 5, 10, 11 | 3bitri 297 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
13 | moel 3410 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | |
14 | 13 | orbi2i 911 | . 2 ⊢ ((𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴) ↔ (𝐵 = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
15 | 3, 12, 14 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∀wral 3067 ∩ cin 3975 ∅c0 4352 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rmo 3388 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 df-disj 5134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |