Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjnf Structured version   Visualization version   GIF version

Theorem disjnf 32556
Description: In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.)
Assertion
Ref Expression
disjnf (Disj 𝑥𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disjnf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inidm 4207 . . . 4 (𝐵𝐵) = 𝐵
21eqeq1i 2741 . . 3 ((𝐵𝐵) = ∅ ↔ 𝐵 = ∅)
32orbi1i 913 . 2 (((𝐵𝐵) = ∅ ∨ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦) ↔ (𝐵 = ∅ ∨ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦))
4 eqidd 2737 . . . 4 (𝑥 = 𝑦𝐵 = 𝐵)
54disjor 5106 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐵) = ∅))
6 orcom 870 . . . . . 6 ((𝑥 = 𝑦 ∨ (𝐵𝐵) = ∅) ↔ ((𝐵𝐵) = ∅ ∨ 𝑥 = 𝑦))
76ralbii 3083 . . . . 5 (∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐵) = ∅) ↔ ∀𝑦𝐴 ((𝐵𝐵) = ∅ ∨ 𝑥 = 𝑦))
8 r19.32v 3178 . . . . 5 (∀𝑦𝐴 ((𝐵𝐵) = ∅ ∨ 𝑥 = 𝑦) ↔ ((𝐵𝐵) = ∅ ∨ ∀𝑦𝐴 𝑥 = 𝑦))
97, 8bitri 275 . . . 4 (∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐵) = ∅) ↔ ((𝐵𝐵) = ∅ ∨ ∀𝑦𝐴 𝑥 = 𝑦))
109ralbii 3083 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐵) = ∅) ↔ ∀𝑥𝐴 ((𝐵𝐵) = ∅ ∨ ∀𝑦𝐴 𝑥 = 𝑦))
11 r19.32v 3178 . . 3 (∀𝑥𝐴 ((𝐵𝐵) = ∅ ∨ ∀𝑦𝐴 𝑥 = 𝑦) ↔ ((𝐵𝐵) = ∅ ∨ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦))
125, 10, 113bitri 297 . 2 (Disj 𝑥𝐴 𝐵 ↔ ((𝐵𝐵) = ∅ ∨ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦))
13 moel 3386 . . 3 (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦)
1413orbi2i 912 . 2 ((𝐵 = ∅ ∨ ∃*𝑥 𝑥𝐴) ↔ (𝐵 = ∅ ∨ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦))
153, 12, 143bitr4i 303 1 (Disj 𝑥𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  ∃*wmo 2538  wral 3052  cin 3930  c0 4313  Disj wdisj 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rmo 3364  df-v 3466  df-dif 3934  df-in 3938  df-nul 4314  df-disj 5092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator