| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjnf | Structured version Visualization version GIF version | ||
| Description: In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.) |
| Ref | Expression |
|---|---|
| disjnf | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4207 | . . . 4 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 2 | 1 | eqeq1i 2741 | . . 3 ⊢ ((𝐵 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅) |
| 3 | 2 | orbi1i 913 | . 2 ⊢ (((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) ↔ (𝐵 = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
| 4 | eqidd 2737 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐵) | |
| 5 | 4 | disjor 5106 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅)) |
| 6 | orcom 870 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦)) | |
| 7 | 6 | ralbii 3083 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ∀𝑦 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦)) |
| 8 | r19.32v 3178 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ 𝑥 = 𝑦) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) | |
| 9 | 7, 8 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
| 10 | 9 | ralbii 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐵) = ∅) ↔ ∀𝑥 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
| 11 | r19.32v 3178 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) | |
| 12 | 5, 10, 11 | 3bitri 297 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ((𝐵 ∩ 𝐵) = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
| 13 | moel 3386 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | |
| 14 | 13 | orbi2i 912 | . 2 ⊢ ((𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴) ↔ (𝐵 = ∅ ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦)) |
| 15 | 3, 12, 14 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 ∀wral 3052 ∩ cin 3930 ∅c0 4313 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rmo 3364 df-v 3466 df-dif 3934 df-in 3938 df-nul 4314 df-disj 5092 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |