MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem7 Structured version   Visualization version   GIF version

Theorem axcontlem7 27061
Description: Lemma for axcont 27067. Given two points in 𝐷, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem7.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem7.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem7 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (𝑃 Btwn ⟨𝑍, 𝑄⟩ ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝐹,𝑡   𝑖,𝑝,𝑥,𝑁,𝑡   𝑃,𝑖,𝑡,𝑥   𝑄,𝑖,𝑡,𝑥   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝐹(𝑥,𝑝)

Proof of Theorem axcontlem7
StepHypRef Expression
1 axcontlem7.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
21ssrab3 3995 . . . . 5 𝐷 ⊆ (𝔼‘𝑁)
32sseli 3896 . . . 4 (𝑃𝐷𝑃 ∈ (𝔼‘𝑁))
43ad2antrl 728 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → 𝑃 ∈ (𝔼‘𝑁))
5 simpll2 1215 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → 𝑍 ∈ (𝔼‘𝑁))
62sseli 3896 . . . 4 (𝑄𝐷𝑄 ∈ (𝔼‘𝑁))
76ad2antll 729 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → 𝑄 ∈ (𝔼‘𝑁))
8 brbtwn 26990 . . 3 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑍, 𝑄⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖)))))
94, 5, 7, 8syl3anc 1373 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (𝑃 Btwn ⟨𝑍, 𝑄⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖)))))
10 axcontlem7.2 . . . . 5 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
111, 10axcontlem6 27060 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
121, 10axcontlem6 27060 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑄𝐷) → ((𝐹𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))
1311, 12anim12dan 622 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))) ∧ ((𝐹𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
14 an4 656 . . . . 5 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))) ∧ ((𝐹𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
15 r19.26 3092 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))
1615anbi2i 626 . . . . 5 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
1714, 16bitr4i 281 . . . 4 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))) ∧ ((𝐹𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
18 id 22 . . . . . . . . . 10 ((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) → (𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
19 oveq2 7221 . . . . . . . . . . 11 ((𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))) → (𝑡 · (𝑄𝑖)) = (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))
2019oveq2d 7229 . . . . . . . . . 10 ((𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))) → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
2118, 20eqeqan12d 2751 . . . . . . . . 9 (((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) → ((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
2221ralimi 3083 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) → ∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
23 ralbi 3090 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))) → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
2422, 23syl 17 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
2524rexbidv 3216 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
26 simpll2 1215 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → 𝑍 ∈ (𝔼‘𝑁))
27 fveecn 26993 . . . . . . . . . . . . 13 ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍𝑖) ∈ ℂ)
2826, 27sylan 583 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍𝑖) ∈ ℂ)
29 simpll3 1216 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → 𝑈 ∈ (𝔼‘𝑁))
30 fveecn 26993 . . . . . . . . . . . . 13 ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑈𝑖) ∈ ℂ)
3129, 30sylan 583 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑈𝑖) ∈ ℂ)
32 elicc01 13054 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
3332simp1bi 1147 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
3433recnd 10861 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
3534ad2antll 729 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → 𝑡 ∈ ℂ)
3635adantr 484 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
37 elrege0 13042 . . . . . . . . . . . . . . . . 17 ((𝐹𝑃) ∈ (0[,)+∞) ↔ ((𝐹𝑃) ∈ ℝ ∧ 0 ≤ (𝐹𝑃)))
3837simplbi 501 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) ∈ (0[,)+∞) → (𝐹𝑃) ∈ ℝ)
3938recnd 10861 . . . . . . . . . . . . . . 15 ((𝐹𝑃) ∈ (0[,)+∞) → (𝐹𝑃) ∈ ℂ)
4039adantr 484 . . . . . . . . . . . . . 14 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑃) ∈ ℂ)
4140ad2antrl 728 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (𝐹𝑃) ∈ ℂ)
4241adantr 484 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑃) ∈ ℂ)
43 elrege0 13042 . . . . . . . . . . . . . . . . 17 ((𝐹𝑄) ∈ (0[,)+∞) ↔ ((𝐹𝑄) ∈ ℝ ∧ 0 ≤ (𝐹𝑄)))
4443simplbi 501 . . . . . . . . . . . . . . . 16 ((𝐹𝑄) ∈ (0[,)+∞) → (𝐹𝑄) ∈ ℝ)
4544recnd 10861 . . . . . . . . . . . . . . 15 ((𝐹𝑄) ∈ (0[,)+∞) → (𝐹𝑄) ∈ ℂ)
4645adantl 485 . . . . . . . . . . . . . 14 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑄) ∈ ℂ)
4746ad2antrl 728 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (𝐹𝑄) ∈ ℂ)
4847adantr 484 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑄) ∈ ℂ)
49 ax-1cn 10787 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
50 simpr1 1196 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → 𝑡 ∈ ℂ)
51 simpr3 1198 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝐹𝑄) ∈ ℂ)
5250, 51mulcld 10853 . . . . . . . . . . . . . . . . 17 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · (𝐹𝑄)) ∈ ℂ)
53 subcl 11077 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝑡 · (𝐹𝑄)) ∈ ℂ) → (1 − (𝑡 · (𝐹𝑄))) ∈ ℂ)
5449, 52, 53sylancr 590 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (1 − (𝑡 · (𝐹𝑄))) ∈ ℂ)
55 subcl 11077 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ) → (1 − (𝐹𝑃)) ∈ ℂ)
5649, 55mpan 690 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑃) ∈ ℂ → (1 − (𝐹𝑃)) ∈ ℂ)
57563ad2ant2 1136 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (1 − (𝐹𝑃)) ∈ ℂ)
5857adantl 485 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (1 − (𝐹𝑃)) ∈ ℂ)
59 simpll 767 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑍𝑖) ∈ ℂ)
6054, 58, 59subdird 11289 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − (𝑡 · (𝐹𝑄))) − (1 − (𝐹𝑃))) · (𝑍𝑖)) = (((1 − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) − ((1 − (𝐹𝑃)) · (𝑍𝑖))))
61 simpr2 1197 . . . . . . . . . . . . . . . . 17 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝐹𝑃) ∈ ℂ)
62 nnncan1 11114 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝑡 · (𝐹𝑄)) ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ) → ((1 − (𝑡 · (𝐹𝑄))) − (1 − (𝐹𝑃))) = ((𝐹𝑃) − (𝑡 · (𝐹𝑄))))
6349, 52, 61, 62mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − (𝑡 · (𝐹𝑄))) − (1 − (𝐹𝑃))) = ((𝐹𝑃) − (𝑡 · (𝐹𝑄))))
6463oveq1d 7228 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − (𝑡 · (𝐹𝑄))) − (1 − (𝐹𝑃))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)))
65 subdi 11265 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (𝑡 · (1 − (𝐹𝑄))) = ((𝑡 · 1) − (𝑡 · (𝐹𝑄))))
6649, 65mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (𝑡 · (1 − (𝐹𝑄))) = ((𝑡 · 1) − (𝑡 · (𝐹𝑄))))
67 mulid1 10831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℂ → (𝑡 · 1) = 𝑡)
6867adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (𝑡 · 1) = 𝑡)
6968oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → ((𝑡 · 1) − (𝑡 · (𝐹𝑄))) = (𝑡 − (𝑡 · (𝐹𝑄))))
7066, 69eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (𝑡 · (1 − (𝐹𝑄))) = (𝑡 − (𝑡 · (𝐹𝑄))))
7150, 51, 70syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · (1 − (𝐹𝑄))) = (𝑡 − (𝑡 · (𝐹𝑄))))
7271oveq2d 7229 . . . . . . . . . . . . . . . . . . 19 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − 𝑡) + (𝑡 · (1 − (𝐹𝑄)))) = ((1 − 𝑡) + (𝑡 − (𝑡 · (𝐹𝑄)))))
73 npncan 11099 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝑡 · (𝐹𝑄)) ∈ ℂ) → ((1 − 𝑡) + (𝑡 − (𝑡 · (𝐹𝑄)))) = (1 − (𝑡 · (𝐹𝑄))))
7449, 50, 52, 73mp3an2i 1468 . . . . . . . . . . . . . . . . . . 19 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − 𝑡) + (𝑡 − (𝑡 · (𝐹𝑄)))) = (1 − (𝑡 · (𝐹𝑄))))
7572, 74eqtr2d 2778 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (1 − (𝑡 · (𝐹𝑄))) = ((1 − 𝑡) + (𝑡 · (1 − (𝐹𝑄)))))
7675oveq1d 7228 . . . . . . . . . . . . . . . . 17 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((1 − 𝑡) + (𝑡 · (1 − (𝐹𝑄)))) · (𝑍𝑖)))
77 subcl 11077 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
7849, 77mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
79783ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
8079adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (1 − 𝑡) ∈ ℂ)
81 subcl 11077 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (1 − (𝐹𝑄)) ∈ ℂ)
8249, 81mpan 690 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑄) ∈ ℂ → (1 − (𝐹𝑄)) ∈ ℂ)
83823ad2ant3 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ) → (1 − (𝐹𝑄)) ∈ ℂ)
8483adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (1 − (𝐹𝑄)) ∈ ℂ)
8550, 84mulcld 10853 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · (1 − (𝐹𝑄))) ∈ ℂ)
8680, 85, 59adddird 10858 . . . . . . . . . . . . . . . . 17 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − 𝑡) + (𝑡 · (1 − (𝐹𝑄)))) · (𝑍𝑖)) = (((1 − 𝑡) · (𝑍𝑖)) + ((𝑡 · (1 − (𝐹𝑄))) · (𝑍𝑖))))
8750, 84, 59mulassd 10856 . . . . . . . . . . . . . . . . . 18 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((𝑡 · (1 − (𝐹𝑄))) · (𝑍𝑖)) = (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖))))
8887oveq2d 7229 . . . . . . . . . . . . . . . . 17 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − 𝑡) · (𝑍𝑖)) + ((𝑡 · (1 − (𝐹𝑄))) · (𝑍𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))))
8976, 86, 883eqtrd 2781 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))))
9089oveq1d 7228 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) − ((1 − (𝐹𝑃)) · (𝑍𝑖))) = ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) − ((1 − (𝐹𝑃)) · (𝑍𝑖))))
9160, 64, 903eqtr3d 2785 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) − ((1 − (𝐹𝑃)) · (𝑍𝑖))))
92 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑈𝑖) ∈ ℂ)
9361, 52, 92subdird 11289 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) = (((𝐹𝑃) · (𝑈𝑖)) − ((𝑡 · (𝐹𝑄)) · (𝑈𝑖))))
9450, 51, 92mulassd 10856 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((𝑡 · (𝐹𝑄)) · (𝑈𝑖)) = (𝑡 · ((𝐹𝑄) · (𝑈𝑖))))
9594oveq2d 7229 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((𝐹𝑃) · (𝑈𝑖)) − ((𝑡 · (𝐹𝑄)) · (𝑈𝑖))) = (((𝐹𝑃) · (𝑈𝑖)) − (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))))
9693, 95eqtrd 2777 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) = (((𝐹𝑃) · (𝑈𝑖)) − (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))))
9791, 96eqeq12d 2753 . . . . . . . . . . . . 13 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) ↔ ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) − ((1 − (𝐹𝑃)) · (𝑍𝑖))) = (((𝐹𝑃) · (𝑈𝑖)) − (𝑡 · ((𝐹𝑄) · (𝑈𝑖))))))
9858, 59mulcld 10853 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − (𝐹𝑃)) · (𝑍𝑖)) ∈ ℂ)
9961, 92mulcld 10853 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((𝐹𝑃) · (𝑈𝑖)) ∈ ℂ)
10080, 59mulcld 10853 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − 𝑡) · (𝑍𝑖)) ∈ ℂ)
10184, 59mulcld 10853 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((1 − (𝐹𝑄)) · (𝑍𝑖)) ∈ ℂ)
10250, 101mulcld 10853 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖))) ∈ ℂ)
103100, 102addcld 10852 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) ∈ ℂ)
10451, 92mulcld 10853 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((𝐹𝑄) · (𝑈𝑖)) ∈ ℂ)
10550, 104mulcld 10853 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · ((𝐹𝑄) · (𝑈𝑖))) ∈ ℂ)
10698, 99, 103, 105addsubeq4d 11240 . . . . . . . . . . . . 13 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))) ↔ ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) − ((1 − (𝐹𝑃)) · (𝑍𝑖))) = (((𝐹𝑃) · (𝑈𝑖)) − (𝑡 · ((𝐹𝑄) · (𝑈𝑖))))))
107100, 102, 105addassd 10855 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))) = (((1 − 𝑡) · (𝑍𝑖)) + ((𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖))))))
10850, 101, 104adddid 10857 . . . . . . . . . . . . . . . 16 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))) = ((𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))))
109108oveq2d 7229 . . . . . . . . . . . . . . 15 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) = (((1 − 𝑡) · (𝑍𝑖)) + ((𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖))))))
110107, 109eqtr4d 2780 . . . . . . . . . . . . . 14 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))))
111110eqeq2d 2748 . . . . . . . . . . . . 13 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = ((((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · ((1 − (𝐹𝑄)) · (𝑍𝑖)))) + (𝑡 · ((𝐹𝑄) · (𝑈𝑖)))) ↔ (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))))
11297, 106, 1113bitr2rd 311 . . . . . . . . . . . 12 ((((𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ (𝐹𝑃) ∈ ℂ ∧ (𝐹𝑄) ∈ ℂ)) → ((((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖))))
11328, 31, 36, 42, 48, 112syl23anc 1379 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖))))
114113ralbidva 3117 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖))))
11536, 48mulcld 10853 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐹𝑄)) ∈ ℂ)
11642, 115subcld 11189 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐹𝑃) − (𝑡 · (𝐹𝑄))) ∈ ℂ)
117 mulcan1g 11485 . . . . . . . . . . . 12 ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) ∈ ℂ ∧ (𝑍𝑖) ∈ ℂ ∧ (𝑈𝑖) ∈ ℂ) → ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ (𝑍𝑖) = (𝑈𝑖))))
118116, 28, 31, 117syl3anc 1373 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ (𝑍𝑖) = (𝑈𝑖))))
119118ralbidva 3117 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)(((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑍𝑖)) = (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) · (𝑈𝑖)) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ (𝑍𝑖) = (𝑈𝑖))))
120 r19.32v 3254 . . . . . . . . . . 11 (∀𝑖 ∈ (1...𝑁)(((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ (𝑍𝑖) = (𝑈𝑖)) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)))
121 simplr 769 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → 𝑍𝑈)
122121neneqd 2945 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → ¬ 𝑍 = 𝑈)
123 biorf 937 . . . . . . . . . . . . . 14 𝑍 = 𝑈 → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ↔ (𝑍 = 𝑈 ∨ ((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0)))
124 orcom 870 . . . . . . . . . . . . . 14 ((𝑍 = 𝑈 ∨ ((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ 𝑍 = 𝑈))
125123, 124bitrdi 290 . . . . . . . . . . . . 13 𝑍 = 𝑈 → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ 𝑍 = 𝑈)))
126122, 125syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ 𝑍 = 𝑈)))
12735, 47mulcld 10853 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (𝑡 · (𝐹𝑄)) ∈ ℂ)
12841, 127subeq0ad 11199 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ↔ (𝐹𝑃) = (𝑡 · (𝐹𝑄))))
129 eqeefv 26994 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)))
1301293adant1 1132 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)))
131130adantr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)))
132131adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)))
133132orbi2d 916 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ 𝑍 = 𝑈) ↔ (((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖))))
134126, 128, 1333bitr3rd 313 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → ((((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ ∀𝑖 ∈ (1...𝑁)(𝑍𝑖) = (𝑈𝑖)) ↔ (𝐹𝑃) = (𝑡 · (𝐹𝑄))))
135120, 134syl5bb 286 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)(((𝐹𝑃) − (𝑡 · (𝐹𝑄))) = 0 ∨ (𝑍𝑖) = (𝑈𝑖)) ↔ (𝐹𝑃) = (𝑡 · (𝐹𝑄))))
136114, 119, 1353bitrd 308 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (𝐹𝑃) = (𝑡 · (𝐹𝑄))))
137136anassrs 471 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (𝐹𝑃) = (𝑡 · (𝐹𝑄))))
138137rexbidva 3215 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄))))
13933adantl 485 . . . . . . . . . . . . 13 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
140 1red 10834 . . . . . . . . . . . . 13 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
14143biimpi 219 . . . . . . . . . . . . . 14 ((𝐹𝑄) ∈ (0[,)+∞) → ((𝐹𝑄) ∈ ℝ ∧ 0 ≤ (𝐹𝑄)))
142141ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → ((𝐹𝑄) ∈ ℝ ∧ 0 ≤ (𝐹𝑄)))
14332simp3bi 1149 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
144143adantl 485 . . . . . . . . . . . . 13 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
145 lemul1a 11686 . . . . . . . . . . . . 13 (((𝑡 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐹𝑄) ∈ ℝ ∧ 0 ≤ (𝐹𝑄))) ∧ 𝑡 ≤ 1) → (𝑡 · (𝐹𝑄)) ≤ (1 · (𝐹𝑄)))
146139, 140, 142, 144, 145syl31anc 1375 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐹𝑄)) ≤ (1 · (𝐹𝑄)))
14745ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹𝑄) ∈ ℂ)
148147mulid2d 10851 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐹𝑄)) = (𝐹𝑄))
149146, 148breqtrd 5079 . . . . . . . . . . 11 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐹𝑄)) ≤ (𝐹𝑄))
150 breq1 5056 . . . . . . . . . . 11 ((𝐹𝑃) = (𝑡 · (𝐹𝑄)) → ((𝐹𝑃) ≤ (𝐹𝑄) ↔ (𝑡 · (𝐹𝑄)) ≤ (𝐹𝑄)))
151149, 150syl5ibrcom 250 . . . . . . . . . 10 ((((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ 𝑡 ∈ (0[,]1)) → ((𝐹𝑃) = (𝑡 · (𝐹𝑄)) → (𝐹𝑃) ≤ (𝐹𝑄)))
152151rexlimdva 3203 . . . . . . . . 9 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)) → (𝐹𝑃) ≤ (𝐹𝑄)))
153 0elunit 13057 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
154 simpl 486 . . . . . . . . . . . . . . 15 (((𝐹𝑃) = 0 ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑃) = 0)
15545mul02d 11030 . . . . . . . . . . . . . . . 16 ((𝐹𝑄) ∈ (0[,)+∞) → (0 · (𝐹𝑄)) = 0)
156155adantl 485 . . . . . . . . . . . . . . 15 (((𝐹𝑃) = 0 ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (0 · (𝐹𝑄)) = 0)
157154, 156eqtr4d 2780 . . . . . . . . . . . . . 14 (((𝐹𝑃) = 0 ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑃) = (0 · (𝐹𝑄)))
158 oveq1 7220 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡 · (𝐹𝑄)) = (0 · (𝐹𝑄)))
159158rspceeqv 3552 . . . . . . . . . . . . . 14 ((0 ∈ (0[,]1) ∧ (𝐹𝑃) = (0 · (𝐹𝑄))) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))
160153, 157, 159sylancr 590 . . . . . . . . . . . . 13 (((𝐹𝑃) = 0 ∧ (𝐹𝑄) ∈ (0[,)+∞)) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))
161160adantrl 716 . . . . . . . . . . . 12 (((𝐹𝑃) = 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))
162161a1d 25 . . . . . . . . . . 11 (((𝐹𝑃) = 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) → ((𝐹𝑃) ≤ (𝐹𝑄) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄))))
163162ex 416 . . . . . . . . . 10 ((𝐹𝑃) = 0 → (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → ((𝐹𝑃) ≤ (𝐹𝑄) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))))
164 simp3 1140 . . . . . . . . . . . . 13 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑃) ≤ (𝐹𝑄))
16538adantr 484 . . . . . . . . . . . . . . 15 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑃) ∈ ℝ)
1661653ad2ant2 1136 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑃) ∈ ℝ)
16737simprbi 500 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑃))
168167adantr 484 . . . . . . . . . . . . . . 15 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑃))
1691683ad2ant2 1136 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → 0 ≤ (𝐹𝑃))
17044adantl 485 . . . . . . . . . . . . . . 15 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (𝐹𝑄) ∈ ℝ)
1711703ad2ant2 1136 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑄) ∈ ℝ)
172 0red 10836 . . . . . . . . . . . . . . 15 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → 0 ∈ ℝ)
173 simp1 1138 . . . . . . . . . . . . . . . 16 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑃) ≠ 0)
174166, 169, 173ne0gt0d 10969 . . . . . . . . . . . . . . 15 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → 0 < (𝐹𝑃))
175172, 166, 171, 174, 164ltletrd 10992 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → 0 < (𝐹𝑄))
176 divelunit 13082 . . . . . . . . . . . . . 14 ((((𝐹𝑃) ∈ ℝ ∧ 0 ≤ (𝐹𝑃)) ∧ ((𝐹𝑄) ∈ ℝ ∧ 0 < (𝐹𝑄))) → (((𝐹𝑃) / (𝐹𝑄)) ∈ (0[,]1) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
177166, 169, 171, 175, 176syl22anc 839 . . . . . . . . . . . . 13 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (((𝐹𝑃) / (𝐹𝑄)) ∈ (0[,]1) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
178164, 177mpbird 260 . . . . . . . . . . . 12 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → ((𝐹𝑃) / (𝐹𝑄)) ∈ (0[,]1))
179403ad2ant2 1136 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑃) ∈ ℂ)
180463ad2ant2 1136 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑄) ∈ ℂ)
181175gt0ne0d 11396 . . . . . . . . . . . . . 14 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑄) ≠ 0)
182179, 180, 181divcan1d 11609 . . . . . . . . . . . . 13 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (((𝐹𝑃) / (𝐹𝑄)) · (𝐹𝑄)) = (𝐹𝑃))
183182eqcomd 2743 . . . . . . . . . . . 12 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → (𝐹𝑃) = (((𝐹𝑃) / (𝐹𝑄)) · (𝐹𝑄)))
184 oveq1 7220 . . . . . . . . . . . . 13 (𝑡 = ((𝐹𝑃) / (𝐹𝑄)) → (𝑡 · (𝐹𝑄)) = (((𝐹𝑃) / (𝐹𝑄)) · (𝐹𝑄)))
185184rspceeqv 3552 . . . . . . . . . . . 12 ((((𝐹𝑃) / (𝐹𝑄)) ∈ (0[,]1) ∧ (𝐹𝑃) = (((𝐹𝑃) / (𝐹𝑄)) · (𝐹𝑄))) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))
186178, 183, 185syl2anc 587 . . . . . . . . . . 11 (((𝐹𝑃) ≠ 0 ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ (𝐹𝑃) ≤ (𝐹𝑄)) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))
1871863exp 1121 . . . . . . . . . 10 ((𝐹𝑃) ≠ 0 → (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → ((𝐹𝑃) ≤ (𝐹𝑄) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)))))
188163, 187pm2.61ine 3025 . . . . . . . . 9 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → ((𝐹𝑃) ≤ (𝐹𝑄) → ∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄))))
189152, 188impbid 215 . . . . . . . 8 (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) → (∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
190189adantl 485 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) → (∃𝑡 ∈ (0[,]1)(𝐹𝑃) = (𝑡 · (𝐹𝑄)) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
191138, 190bitrd 282 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
19225, 191sylan9bbr 514 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ ((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖))))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
193192anasss 470 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ (𝐹𝑄) ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)((𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))) ∧ (𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
19417, 193sylan2b 597 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))) ∧ ((𝐹𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (((1 − (𝐹𝑄)) · (𝑍𝑖)) + ((𝐹𝑄) · (𝑈𝑖)))))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
19513, 194syldan 594 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑄𝑖))) ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
1969, 195bitrd 282 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (𝑃 Btwn ⟨𝑍, 𝑄⟩ ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  {crab 3065  cop 4547   class class class wbr 5053  {copab 5115  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  +∞cpnf 10864   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  [,)cico 12937  [,]cicc 12938  ...cfz 13095  𝔼cee 26979   Btwn cbtwn 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-z 12177  df-uz 12439  df-ico 12941  df-icc 12942  df-fz 13096  df-ee 26982  df-btwn 26983
This theorem is referenced by:  axcontlem9  27063
  Copyright terms: Public domain W3C validator