Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinun2 | Structured version Visualization version GIF version |
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4985 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
iinun2 | ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3267 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | elun 4079 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
3 | 2 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
4 | eliin 4926 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
5 | 4 | elv 3428 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
6 | 5 | orbi2i 909 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
7 | 1, 3, 6 | 3bitr4i 302 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
8 | eliin 4926 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶))) | |
9 | 8 | elv 3428 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) |
10 | elun 4079 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
11 | 7, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶)) |
12 | 11 | eqriv 2735 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ cun 3881 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-un 3888 df-iin 4924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |