MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Structured version   Visualization version   GIF version

Theorem iinun2 5096
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5082 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iinun2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3198 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∨ ∀𝑥𝐴 𝑦𝐶))
2 elun 4176 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32ralbii 3099 . . . 4 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliin 5020 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
54elv 3493 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
65orbi2i 911 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∨ ∀𝑥𝐴 𝑦𝐶))
71, 3, 63bitr4i 303 . . 3 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
8 eliin 5020 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
98elv 3493 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
10 elun 4176 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
117, 9, 103bitr4i 303 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1211eqriv 2737 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-un 3981  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator