| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinun2 | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5012 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
| Ref | Expression |
|---|---|
| iinun2 | ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v 3166 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 2 | elun 4102 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
| 3 | 2 | ralbii 3079 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
| 4 | eliin 4948 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 5 | 4 | elv 3442 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
| 6 | 5 | orbi2i 912 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 7 | 1, 3, 6 | 3bitr4i 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 8 | eliin 4948 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶))) | |
| 9 | 8 | elv 3442 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) |
| 10 | elun 4102 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
| 11 | 7, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 12 | 11 | eqriv 2730 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∪ cun 3896 ∩ ciin 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-un 3903 df-iin 4946 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |