| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.36zv | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| r19.36zv | ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3090 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.9rzv 4447 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 3 | 2 | imbi2d 340 | . 2 ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: 2reuimp 47214 |
| Copyright terms: Public domain | W3C validator |