| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.36zv | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| r19.36zv | ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3096 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.9rzv 4480 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 3 | 2 | imbi2d 340 | . 2 ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-ne 2934 df-ral 3053 df-rex 3062 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: 2reuimp 47111 |
| Copyright terms: Public domain | W3C validator |