MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.36zv Structured version   Visualization version   GIF version

Theorem r19.36zv 4433
Description: Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.36zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.36zv
StepHypRef Expression
1 r19.9rzv 4426 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥𝐴 𝜓))
21imbi2d 344 . 2 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)))
3 r19.35 3332 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 293 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wne 3013  wral 3132  wrex 3133  c0 4274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-dif 3921  df-nul 4275
This theorem is referenced by:  2reuimp  43513
  Copyright terms: Public domain W3C validator