MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.9rzv Structured version   Visualization version   GIF version

Theorem r19.9rzv 4430
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.9rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.9rzv
StepHypRef Expression
1 dfrex2 3170 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 r19.3rzv 4429 . . 3 (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥𝐴 ¬ 𝜑))
32con1bid 356 . 2 (𝐴 ≠ ∅ → (¬ ∀𝑥𝐴 ¬ 𝜑𝜑))
41, 3bitr2id 284 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wne 2943  wral 3064  wrex 3065  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-ne 2944  df-ral 3069  df-rex 3070  df-dif 3890  df-nul 4257
This theorem is referenced by:  r19.45zv  4433  r19.44zv  4434  r19.36zv  4437  iunconst  4933  lcmgcdlem  16311  pmtrprfvalrn  19096  dvdsr02  19898  voliune  32197  dya2iocuni  32250  filnetlem4  34570  prmunb2  41929
  Copyright terms: Public domain W3C validator