MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.9rzv Structured version   Visualization version   GIF version

Theorem r19.9rzv 4506
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.9rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.9rzv
StepHypRef Expression
1 dfrex2 3071 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 r19.3rzv 4505 . . 3 (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥𝐴 ¬ 𝜑))
32con1bid 355 . 2 (𝐴 ≠ ∅ → (¬ ∀𝑥𝐴 ¬ 𝜑𝜑))
41, 3bitr2id 284 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wne 2938  wral 3059  wrex 3068  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-ne 2939  df-ral 3060  df-rex 3069  df-dif 3966  df-nul 4340
This theorem is referenced by:  r19.45zv  4509  r19.44zv  4510  r19.36zv  4513  iunconst  5006  lcmgcdlem  16640  pmtrprfvalrn  19521  dvdsr02  20389  voliune  34210  dya2iocuni  34265  filnetlem4  36364  prmunb2  44307
  Copyright terms: Public domain W3C validator