Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.9rzv | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.9rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3166 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | r19.3rzv 4426 | . . 3 ⊢ (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
3 | 2 | con1bid 355 | . 2 ⊢ (𝐴 ≠ ∅ → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑)) |
4 | 1, 3 | bitr2id 283 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: r19.45zv 4430 r19.44zv 4431 r19.36zv 4434 iunconst 4930 lcmgcdlem 16239 pmtrprfvalrn 19011 dvdsr02 19813 voliune 32097 dya2iocuni 32150 filnetlem4 34497 prmunb2 41818 |
Copyright terms: Public domain | W3C validator |