MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.9rzv Structured version   Visualization version   GIF version

Theorem r19.9rzv 4436
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.9rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.9rzv
StepHypRef Expression
1 dfrex2 3169 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 r19.3rzv 4435 . . 3 (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥𝐴 ¬ 𝜑))
32con1bid 356 . 2 (𝐴 ≠ ∅ → (¬ ∀𝑥𝐴 ¬ 𝜑𝜑))
41, 3bitr2id 284 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wne 2945  wral 3066  wrex 3067  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-9 2120  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-ne 2946  df-ral 3071  df-rex 3072  df-dif 3895  df-nul 4263
This theorem is referenced by:  r19.45zv  4439  r19.44zv  4440  r19.36zv  4443  iunconst  4939  lcmgcdlem  16307  pmtrprfvalrn  19092  dvdsr02  19894  voliune  32191  dya2iocuni  32244  filnetlem4  34564  prmunb2  41897
  Copyright terms: Public domain W3C validator