![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.9rzv | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.9rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | r19.3rzv 4500 | . . 3 ⊢ (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
3 | 2 | con1bid 354 | . 2 ⊢ (𝐴 ≠ ∅ → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑)) |
4 | 1, 3 | bitr2id 283 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ≠ wne 2929 ∀wral 3050 ∃wrex 3059 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-ne 2930 df-ral 3051 df-rex 3060 df-dif 3947 df-nul 4323 |
This theorem is referenced by: r19.45zv 4504 r19.44zv 4505 r19.36zv 4508 iunconst 5006 lcmgcdlem 16580 pmtrprfvalrn 19455 dvdsr02 20323 voliune 33976 dya2iocuni 34031 filnetlem4 35993 prmunb2 43887 |
Copyright terms: Public domain | W3C validator |