MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.9rzv Structured version   Visualization version   GIF version

Theorem r19.9rzv 4459
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.9rzv (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem r19.9rzv
StepHypRef Expression
1 dfrex2 3056 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 r19.3rzv 4458 . . 3 (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥𝐴 ¬ 𝜑))
32con1bid 355 . 2 (𝐴 ≠ ∅ → (¬ ∀𝑥𝐴 ¬ 𝜑𝜑))
41, 3bitr2id 284 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wne 2925  wral 3044  wrex 3053  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-ne 2926  df-ral 3045  df-rex 3054  df-dif 3914  df-nul 4293
This theorem is referenced by:  r19.45zv  4462  r19.44zv  4463  r19.36zv  4466  iunconst  4961  lcmgcdlem  16552  pmtrprfvalrn  19402  dvdsr02  20292  voliune  34212  dya2iocuni  34267  filnetlem4  36362  prmunb2  44293
  Copyright terms: Public domain W3C validator