| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.9rzv | Structured version Visualization version GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.9rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | r19.3rzv 4479 | . . 3 ⊢ (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 3 | 2 | con1bid 355 | . 2 ⊢ (𝐴 ≠ ∅ → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑)) |
| 4 | 1, 3 | bitr2id 284 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-ne 2932 df-ral 3051 df-rex 3060 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: r19.45zv 4483 r19.44zv 4484 r19.36zv 4487 iunconst 4981 lcmgcdlem 16625 pmtrprfvalrn 19474 dvdsr02 20340 voliune 34189 dya2iocuni 34244 filnetlem4 36341 prmunb2 44287 |
| Copyright terms: Public domain | W3C validator |