| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.9rzv | Structured version Visualization version GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.9rzv | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | r19.3rzv 4465 | . . 3 ⊢ (𝐴 ≠ ∅ → (¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 3 | 2 | con1bid 355 | . 2 ⊢ (𝐴 ≠ ∅ → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑)) |
| 4 | 1, 3 | bitr2id 284 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-ne 2927 df-ral 3046 df-rex 3055 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: r19.45zv 4469 r19.44zv 4470 r19.36zv 4473 iunconst 4968 lcmgcdlem 16583 pmtrprfvalrn 19425 dvdsr02 20288 voliune 34226 dya2iocuni 34281 filnetlem4 36376 prmunb2 44307 |
| Copyright terms: Public domain | W3C validator |