MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2zb Structured version   Visualization version   GIF version

Theorem r19.2zb 4424
Description: A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4423. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.)
Assertion
Ref Expression
r19.2zb (𝐴 ≠ ∅ ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.2zb
StepHypRef Expression
1 r19.2z 4423 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
21ex 416 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑))
3 noel 4280 . . . . . . 7 ¬ 𝑥 ∈ ∅
43pm2.21i 119 . . . . . 6 (𝑥 ∈ ∅ → 𝜑)
54rgen 3143 . . . . 5 𝑥 ∈ ∅ 𝜑
6 raleq 3396 . . . . 5 (𝐴 = ∅ → (∀𝑥𝐴 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑))
75, 6mpbiri 261 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
87necon3bi 3040 . . 3 (¬ ∀𝑥𝐴 𝜑𝐴 ≠ ∅)
9 exsimpl 1870 . . . 4 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥 𝑥𝐴)
10 df-rex 3139 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
11 n0 4293 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
129, 10, 113imtr4i 295 . . 3 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
138, 12ja 189 . 2 ((∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑) → 𝐴 ≠ ∅)
142, 13impbii 212 1 (𝐴 ≠ ∅ ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  wral 3133  wrex 3134  c0 4276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-dif 3922  df-nul 4277
This theorem is referenced by:  iinpreima  6830  utopbas  22850  clsk3nimkb  40690  radcnvrat  40966
  Copyright terms: Public domain W3C validator