Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.2zb | Structured version Visualization version GIF version |
Description: A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4422. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
Ref | Expression |
---|---|
r19.2zb | ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z 4422 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | ex 412 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
3 | noel 4261 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | pm2.21i 119 | . . . . . 6 ⊢ (𝑥 ∈ ∅ → 𝜑) |
5 | 4 | rgen 3073 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
6 | raleq 3333 | . . . . 5 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑)) | |
7 | 5, 6 | mpbiri 257 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
8 | 7 | necon3bi 2969 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
9 | exsimpl 1872 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 ∈ 𝐴) | |
10 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
11 | n0 4277 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
12 | 9, 10, 11 | 3imtr4i 291 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
13 | 8, 12 | ja 186 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) → 𝐴 ≠ ∅) |
14 | 2, 13 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: iinpreima 6928 utopbas 23295 clsk3nimkb 41539 radcnvrat 41821 |
Copyright terms: Public domain | W3C validator |